--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer datasets: - id_nergrit_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: my_nergrit_model results: - task: name: Token Classification type: token-classification dataset: name: id_nergrit_corpus type: id_nergrit_corpus config: ner split: validation args: ner metrics: - name: Precision type: precision value: 0.811461318051576 - name: Recall type: recall value: 0.8397580358201874 - name: F1 type: f1 value: 0.8253672184658428 - name: Accuracy type: accuracy value: 0.947162775616083 --- # my_nergrit_model This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.1786 - Precision: 0.8115 - Recall: 0.8398 - F1: 0.8254 - Accuracy: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5063 | 1.0 | 784 | 0.1926 | 0.7911 | 0.8243 | 0.8074 | 0.9418 | | 0.164 | 2.0 | 1568 | 0.1786 | 0.8115 | 0.8398 | 0.8254 | 0.9472 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3