File size: 18,857 Bytes
6c189ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#!/usr/bin/env python

# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
# application.
#
# example: python zero_to_fp32.py . pytorch_model.bin

import argparse
import torch
import glob
import math
import os
import re
from collections import OrderedDict

# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
# DeepSpeed data structures it has to be available in the current python environment.
from deepspeed.utils import logger
from deepspeed.checkpoint.constants import (DS_VERSION,
                                            OPTIMIZER_STATE_DICT,
                                            SINGLE_PARTITION_OF_FP32_GROUPS,
                                            FP32_FLAT_GROUPS,
                                            ZERO_STAGE,
                                            PARTITION_COUNT,
                                            PARAM_SHAPES,
                                            BUFFER_NAMES)

debug = 0

# load to cpu
device = torch.device('cpu')


def atoi(text):
    return int(text) if text.isdigit() else text


def natural_keys(text):
    '''
    alist.sort(key=natural_keys) sorts in human order
    http://nedbatchelder.com/blog/200712/human_sorting.html
    (See Toothy's implementation in the comments)
    '''
    return [atoi(c) for c in re.split(r'(\d+)', text)]


def get_model_state_file(checkpoint_dir, zero_stage):
    if not os.path.isdir(checkpoint_dir):
        raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")

    # there should be only one file
    if zero_stage == 2:
        file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
    elif zero_stage == 3:
        file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")

    if not os.path.exists(file):
        raise FileNotFoundError(f"can't find model states file at '{file}'")

    return file


def get_optim_files(checkpoint_dir):
    # XXX: need to test that this simple glob rule works for multi-node setup too
    optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
                                                "*_optim_states.pt")),
                         key=natural_keys)

    if len(optim_files) == 0:
        raise FileNotFoundError(
            f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")

    return optim_files


def parse_model_state(file):
    state_dict = torch.load(file, map_location=device)

    if BUFFER_NAMES not in state_dict:
        raise ValueError(f"{file} is not a model state checkpoint")
    buffer_names = state_dict[BUFFER_NAMES]
    if debug:
        print("Found buffers:", buffer_names)

    # recover just the buffers while restoring them to fp32 if they were saved in fp16
    buffers = {
        k: v.float()
        for k,
        v in state_dict["module"].items() if k in buffer_names
    }
    param_shapes = state_dict[PARAM_SHAPES]

    ds_version = state_dict.get(DS_VERSION, None)

    return buffers, param_shapes, ds_version


def parse_optim_states(files, ds_checkpoint_dir):

    total_files = len(files)
    state_dicts = []
    for f in files:
        state_dicts.append(torch.load(f, map_location=device))

    if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
        raise ValueError(f"{files[0]} is not a zero checkpoint")
    zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
    world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]

    # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
    # parameters can be different from data parallelism for non-expert parameters. So we can just
    # use the max of the partition_count to get the dp world_size.

    if type(world_size) is list:
        world_size = max(world_size)

    if world_size != total_files:
        raise ValueError(
            f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
            "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
        )

    # the groups are named differently in each stage
    if zero_stage == 2:
        fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
    elif zero_stage == 3:
        fp32_groups_key = FP32_FLAT_GROUPS
    else:
        raise ValueError(f"unknown zero stage {zero_stage}")

    if zero_stage == 2:
        fp32_flat_groups = [
            state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
            for i in range(len(state_dicts))
        ]
    elif zero_stage == 3:
        # if there is more than one param group, there will be multiple flattened tensors - one
        # flattened tensor per group - for simplicity merge them into a single tensor
        #
        # XXX: could make the script more memory efficient for when there are multiple groups - it
        # will require matching the sub-lists of param_shapes for each param group flattened tensor

        fp32_flat_groups = [
            torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
                      0) for i in range(len(state_dicts))
        ]

    return zero_stage, world_size, fp32_flat_groups


def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
    """
    Returns fp32 state_dict reconstructed from ds checkpoint

    Args:
        - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)

    """
    print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")

    optim_files = get_optim_files(ds_checkpoint_dir)
    zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
    print(
        f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")

    model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
    buffers, param_shapes, ds_version = parse_model_state(model_file)
    print(f'Parsing checkpoint created by deepspeed=={ds_version}')

    if zero_stage == 2:
        return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
                                                          param_shapes,
                                                          fp32_flat_groups,
                                                          buffers)
    elif zero_stage == 3:
        return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
                                                          param_shapes,
                                                          fp32_flat_groups,
                                                          buffers)


def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
                                               param_shapes,
                                               fp32_flat_groups,
                                               buffers):

    # Reconstruction protocol:
    #
    # XXX: document this

    if debug:
        for i in range(world_size):
            for j in range(len(fp32_flat_groups[0])):
                print(
                    f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")

    # XXX: memory usage doubles here (zero2)
    num_param_groups = len(fp32_flat_groups[0])
    merged_single_partition_of_fp32_groups = []
    for i in range(num_param_groups):
        merged_partitions = [sd[i] for sd in fp32_flat_groups]
        full_single_fp32_vector = torch.cat(merged_partitions, 0)
        merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
    avail_numel = sum([
        full_single_fp32_vector.numel()
        for full_single_fp32_vector in merged_single_partition_of_fp32_groups
    ])

    if debug:
        wanted_params = sum([len(shapes) for shapes in param_shapes])
        wanted_numel = sum(
            [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
        # not asserting if there is a mismatch due to possible padding
        print(f"Have {avail_numel} numels to process.")
        print(f"Need {wanted_numel} numels in {wanted_params} params.")

    state_dict = OrderedDict()

    # buffers
    state_dict.update(buffers)
    if debug:
        print(f"added {len(buffers)} buffers")

    # params
    # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
    # out-of-core computing solution
    total_numel = 0
    total_params = 0
    for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
        offset = 0
        avail_numel = full_single_fp32_vector.numel()
        for name, shape in shapes.items():

            unpartitioned_numel = shape.numel()
            total_numel += unpartitioned_numel
            total_params += 1

            if debug:
                print(
                    f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
                )
            state_dict[name] = full_single_fp32_vector.narrow(
                0,
                offset,
                unpartitioned_numel).view(shape)
            offset += unpartitioned_numel

        # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
        # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
        # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
        # live optimizer object, so we are checking that the numbers are within the right range
        align_to = 2 * world_size

        def zero2_align(x):
            return align_to * math.ceil(x / align_to)

        if debug:
            print(f"original offset={offset}, avail_numel={avail_numel}")

        offset = zero2_align(offset)
        avail_numel = zero2_align(avail_numel)

        if debug:
            print(f"aligned  offset={offset}, avail_numel={avail_numel}")

        # Sanity check
        if offset != avail_numel:
            raise ValueError(
                f"consumed {offset} numels out of {avail_numel} - something is wrong")

    print(
        f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
    )

    return state_dict


def zero3_partitioned_param_info(unpartitioned_numel, world_size):
    remainder = unpartitioned_numel % world_size
    padding_numel = (world_size - remainder) if remainder else 0
    partitioned_numel = math.ceil(unpartitioned_numel / world_size)
    return partitioned_numel, padding_numel


def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
                                               param_shapes,
                                               fp32_flat_groups,
                                               buffers):

    # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
    # param, re-consolidating each param, while dealing with padding if any

    avail_numel = fp32_flat_groups[0].numel() * world_size
    # merge list of dicts, preserving order
    param_shapes = {k: v for d in param_shapes for k, v in d.items()}

    if debug:
        for i in range(world_size):
            print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")

        wanted_params = len(param_shapes)
        wanted_numel = sum(shape.numel() for shape in param_shapes.values())
        # not asserting if there is a mismatch due to possible padding
        print(f"Have {avail_numel} numels to process.")
        print(f"Need {wanted_numel} numels in {wanted_params} params.")

    state_dict = OrderedDict()

    # buffers
    state_dict.update(buffers)
    if debug:
        print(f"added {len(buffers)} buffers")

    # params
    # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
    # out-of-core computing solution
    offset = 0
    total_numel = 0
    total_params = 0
    for name, shape in param_shapes.items():

        unpartitioned_numel = shape.numel()
        total_numel += unpartitioned_numel
        total_params += 1

        partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)

        if debug:
            print(
                f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
            )

        # XXX: memory usage doubles here
        state_dict[name] = torch.cat(
            tuple(fp32_flat_groups[i].narrow(0,
                                             offset,
                                             partitioned_numel)
                  for i in range(world_size)),
            0).narrow(0,
                      0,
                      unpartitioned_numel).view(shape)
        offset += partitioned_numel

    offset *= world_size

    # Sanity check
    if offset != avail_numel:
        raise ValueError(
            f"consumed {offset} numels out of {avail_numel} - something is wrong")

    print(
        f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
    )

    return state_dict


def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
    """
    Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
    ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
    via a model hub.

    Args:
        - ``checkpoint_dir``: path to the desired checkpoint folder
        - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``

    Returns:
        - pytorch ``state_dict``

    Note: this approach may not work if your application doesn't have sufficient free CPU memory and
    you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
    the checkpoint.

    A typical usage might be ::

        from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
        # do the training and checkpoint saving
        state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
        model = model.cpu() # move to cpu
        model.load_state_dict(state_dict)
        # submit to model hub or save the model to share with others

    In this example the ``model`` will no longer be usable in the deepspeed context of the same
    application. i.e. you will need to re-initialize the deepspeed engine, since
    ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.

    If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.

    """
    if tag is None:
        latest_path = os.path.join(checkpoint_dir, 'latest')
        if os.path.isfile(latest_path):
            with open(latest_path, 'r') as fd:
                tag = fd.read().strip()
        else:
            raise ValueError(f"Unable to find 'latest' file at {latest_path}")

    ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)

    if not os.path.isdir(ds_checkpoint_dir):
        raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")

    return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)


def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
    """
    Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
    loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.

    Args:
        - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
        - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
        - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
    """

    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
    print(f"Saving fp32 state dict to {output_file}")
    torch.save(state_dict, output_file)


def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
    """
    1. Put the provided model to cpu
    2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
    3. Load it into the provided model

    Args:
        - ``model``: the model object to update
        - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
        - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``

    Returns:
        - ``model`: modified model

    Make sure you have plenty of CPU memory available before you call this function. If you don't
    have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
    conveniently placed for you in the checkpoint folder.

    A typical usage might be ::

        from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
        model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
        # submit to model hub or save the model to share with others

    Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
    of the same application. i.e. you will need to re-initialize the deepspeed engine, since
    ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.

    """
    logger.info(f"Extracting fp32 weights")
    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)

    logger.info(f"Overwriting model with fp32 weights")
    model = model.cpu()
    model.load_state_dict(state_dict, strict=False)

    return model


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "checkpoint_dir",
        type=str,
        help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
    parser.add_argument(
        "output_file",
        type=str,
        help=
        "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
    )
    parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
    args = parser.parse_args()

    debug = args.debug

    convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)