commit a2c-PandaReachDense-v2
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -11.17 +/- 3.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b211e0ce70bfc230521852092a21acea69dc028c009c20dcc9b57e8a855cdcf2
|
3 |
+
size 103718
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79ea20fede60>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x79ea20fccf00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000,
|
45 |
+
"_total_timesteps": 1000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1680812870737837029,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDBpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMBPXhT9hbZ6/sz4NP7ArJT/A4XW/p2RmP7+EfD/QeNU/Uw4aP93Xar906Ww/x4/Nv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DBpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj2UdJRidS4=",
|
59 |
+
"achieved_goal": "[[0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]]",
|
60 |
+
"desired_goal": "[[ 1.045626 -1.237713 0.55173796]\n [ 0.64519787 -0.9604759 0.89997333]\n [ 0.98640054 1.6677494 0.6017811 ]\n [-0.9173563 0.9254372 -1.6059502 ]]",
|
61 |
+
"observation": "[[0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMJcGNL3GePW9y539Pe18nb2BtUo9bxX+PciTAz4zHak9hGdlPreXdLosZd+9SAWMPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.0439516 -0.11985926 0.12383612]\n [-0.07689843 0.0494895 0.12406432]\n [ 0.12849343 0.08257522 0.2240277 ]\n [-0.00093305 -0.10907969 0.2734778 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxv1HpkPvIMCUhpRSlIwBbJRLMowBdJRHP/IkpZwGW2R1fZQoaAZoCWgPQwh7L75oj58lwJSGlFKUaBVLMmgWRz/uy0rsjVx0dX2UKGgGaAloD0MI3bOu0XJYJsCUhpRSlGgVSzJoFkc/6V+1Bt1p03V9lChoBmgJaA9DCF2MgXUc5yrAlIaUUpRoFUsyaBZHP+PpFkQPI4l1fZQoaAZoCWgPQwg5Drxa7iAzwJSGlFKUaBVLMmgWRz/7OQMhHLA6dX2UKGgGaAloD0MIXaeRlsr7J8CUhpRSlGgVSzJoFkc/+Hi1iONo8XV9lChoBmgJaA9DCCP3dHXHOjDAlIaUUpRoFUsyaBZHP/XL/jsD4g11fZQoaAZoCWgPQwjzBS0kYFQuwJSGlFKUaBVLMmgWRz/zD6vaDf3wdX2UKGgGaAloD0MIN6lorP0tMcCUhpRSlGgVSzJoFkdAAkFMZgogFHV9lChoBmgJaA9DCMZq8/+qSy/AlIaUUpRoFUsyaBZHQADh9LHuJDV1fZQoaAZoCWgPQwjisZ/FUnQfwJSGlFKUaBVLMmgWRz//E2xY7q6fdX2UKGgGaAloD0MIrUz4pX6eG8CUhpRSlGgVSzJoFkc//FV/+bVjJHV9lChoBmgJaA9DCHgmNEksfTHAlIaUUpRoFUsyaBZHQAarfDUExIt1fZQoaAZoCWgPQwhrRDAOLsUgwJSGlFKUaBVLMmgWR0AFTUoa1kUcdX2UKGgGaAloD0MIB5s6j4ovK8CUhpRSlGgVSzJoFkdAA/ZntfG+9XV9lChoBmgJaA9DCEFGQIUjYCfAlIaUUpRoFUsyaBZHQAKakIomXw91fZQoaAZoCWgPQwiCixU1mMYZwJSGlFKUaBVLMmgWR0ALOCuloDgZdX2UKGgGaAloD0MIYw6CjlaFGMCUhpRSlGgVSzJoFkdACdiWE9Mbm3V9lChoBmgJaA9DCMEffv57kDDAlIaUUpRoFUsyaBZHQAh/foA4n4R1fZQoaAZoCWgPQwjKwWwCDL8wwJSGlFKUaBVLMmgWR0AHIJJGvwEydWUu"
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9792d1d2b7517e858ab589b134e43da1c073ba51afdbd718235c61901c82ab2
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc96dfc549df35278c75a32ed020969762bae5c18edda0e5ccd8982800277117
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023
|
2 |
+
- Python: 3.7.12
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79ea20fede60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x79ea20fccf00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680812870737837029, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDBpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z/BpTc/TnuPPEHu8z+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMBPXhT9hbZ6/sz4NP7ArJT/A4XW/p2RmP7+EfD/QeNU/Uw4aP93Xar906Ww/x4/Nv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DBpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj3BpTc/TnuPPEHu8z9mTQI+P+wPPJ5fvj2UdJRidS4=", "achieved_goal": "[[0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]\n [0.71737295 0.01751485 1.9057084 ]]", "desired_goal": "[[ 1.045626 -1.237713 0.55173796]\n [ 0.64519787 -0.9604759 0.89997333]\n [ 0.98640054 1.6677494 0.6017811 ]\n [-0.9173563 0.9254372 -1.6059502 ]]", "observation": "[[0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]\n [0.71737295 0.01751485 1.9057084 0.12724838 0.00878435 0.09295581]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMJcGNL3GePW9y539Pe18nb2BtUo9bxX+PciTAz4zHak9hGdlPreXdLosZd+9SAWMPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0439516 -0.11985926 0.12383612]\n [-0.07689843 0.0494895 0.12406432]\n [ 0.12849343 0.08257522 0.2240277 ]\n [-0.00093305 -0.10907969 0.2734778 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxv1HpkPvIMCUhpRSlIwBbJRLMowBdJRHP/IkpZwGW2R1fZQoaAZoCWgPQwh7L75oj58lwJSGlFKUaBVLMmgWRz/uy0rsjVx0dX2UKGgGaAloD0MI3bOu0XJYJsCUhpRSlGgVSzJoFkc/6V+1Bt1p03V9lChoBmgJaA9DCF2MgXUc5yrAlIaUUpRoFUsyaBZHP+PpFkQPI4l1fZQoaAZoCWgPQwg5Drxa7iAzwJSGlFKUaBVLMmgWRz/7OQMhHLA6dX2UKGgGaAloD0MIXaeRlsr7J8CUhpRSlGgVSzJoFkc/+Hi1iONo8XV9lChoBmgJaA9DCCP3dHXHOjDAlIaUUpRoFUsyaBZHP/XL/jsD4g11fZQoaAZoCWgPQwjzBS0kYFQuwJSGlFKUaBVLMmgWRz/zD6vaDf3wdX2UKGgGaAloD0MIN6lorP0tMcCUhpRSlGgVSzJoFkdAAkFMZgogFHV9lChoBmgJaA9DCMZq8/+qSy/AlIaUUpRoFUsyaBZHQADh9LHuJDV1fZQoaAZoCWgPQwjisZ/FUnQfwJSGlFKUaBVLMmgWRz//E2xY7q6fdX2UKGgGaAloD0MIrUz4pX6eG8CUhpRSlGgVSzJoFkc//FV/+bVjJHV9lChoBmgJaA9DCHgmNEksfTHAlIaUUpRoFUsyaBZHQAarfDUExIt1fZQoaAZoCWgPQwhrRDAOLsUgwJSGlFKUaBVLMmgWR0AFTUoa1kUcdX2UKGgGaAloD0MIB5s6j4ovK8CUhpRSlGgVSzJoFkdAA/ZntfG+9XV9lChoBmgJaA9DCEFGQIUjYCfAlIaUUpRoFUsyaBZHQAKakIomXw91fZQoaAZoCWgPQwiCixU1mMYZwJSGlFKUaBVLMmgWR0ALOCuloDgZdX2UKGgGaAloD0MIYw6CjlaFGMCUhpRSlGgVSzJoFkdACdiWE9Mbm3V9lChoBmgJaA9DCMEffv57kDDAlIaUUpRoFUsyaBZHQAh/foA4n4R1fZQoaAZoCWgPQwjKwWwCDL8wwJSGlFKUaBVLMmgWR0AHIJJGvwEydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (641 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -11.169907528348267, "std_reward": 3.253848068539077, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T20:27:58.314301"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d21b25afe84259fb44442f0dac294f6837f0ff2c0163c84b33addb3143c855a
|
3 |
+
size 3731
|