abhishek HF staff commited on
Commit
42bf20b
1 Parent(s): b3f45b5

Commit From AutoNLP

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
29
+ *.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags: autonlp
3
+ language: en
4
+ widget:
5
+ - text: "I love AutoNLP 🤗"
6
+ datasets:
7
+ - bshlgrs/autonlp-data-classification_with_all_labellers
8
+ ---
9
+
10
+ # Model Trained Using AutoNLP
11
+
12
+ - Problem type: Multi-class Classification
13
+ - Model ID: 9532137
14
+
15
+ ## Validation Metrics
16
+
17
+ - Loss: 0.34556105732917786
18
+ - Accuracy: 0.8749890724713699
19
+ - Macro F1: 0.5243623959669343
20
+ - Micro F1: 0.8749890724713699
21
+ - Weighted F1: 0.8638030768409057
22
+ - Macro Precision: 0.5016762404900895
23
+ - Micro Precision: 0.8749890724713699
24
+ - Weighted Precision: 0.8547962562614184
25
+ - Macro Recall: 0.5529674694200845
26
+ - Micro Recall: 0.8749890724713699
27
+ - Weighted Recall: 0.8749890724713699
28
+
29
+
30
+ ## Usage
31
+
32
+ You can use cURL to access this model:
33
+
34
+ ```
35
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification_with_all_labellers-9532137
36
+ ```
37
+
38
+ Or Python API:
39
+
40
+ ```
41
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
42
+
43
+ model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True)
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True)
46
+
47
+ inputs = tokenizer("I love AutoNLP", return_tensors="pt")
48
+
49
+ outputs = model(**inputs)
50
+ ```
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoNLP",
3
+ "_num_labels": 3,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "No",
14
+ "1": "Unsure",
15
+ "2": "Yes"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "No": 0,
21
+ "Unsure": 1,
22
+ "Yes": 2
23
+ },
24
+ "layer_norm_eps": 1e-12,
25
+ "max_length": 192,
26
+ "max_position_embeddings": 512,
27
+ "model_type": "bert",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pad_token_id": 0,
31
+ "padding": "max_length",
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "transformers_version": "4.8.0",
35
+ "type_vocab_size": 2,
36
+ "use_cache": true,
37
+ "vocab_size": 30522
38
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46d907b4bab049c25e21cbb66505b5ca407f6eb068c7dc6926afeeb8c76cf561
3
+ size 438022317
sample_input.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:910bac67951675eed10501ecf3401ab5049ab4bcc4681a2a8b3478379335a217
3
+ size 5920
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "AutoNLP", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff