init
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.44 +/- 15.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e528176d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e52817760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e528177f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e52817880>", "_build": "<function ActorCriticPolicy._build at 0x7f8e52817910>", "forward": "<function ActorCriticPolicy.forward at 0x7f8e528179a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e52817a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e52817ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8e52817b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e52817be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e52817c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e52817d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8e5ab95d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700706980602356018, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOnaj3DhUC6ptSTux27Izir9Xm7pjePNwAAgD8AAIA/MwkKPTnBEz/IbSA8Ki9rvsHtgryds1u9AAAAAAAAAADmrwW9e/Kbutb1kzozc4QzD468umJSqrkAAIA/AACAPxqkZT329HS6D2TLulGYvLUfr8869tntOQAAgD8AAIA/Zmp/POx5lLmGqv633t2nsl4eaLpdkhc3AACAPwAAgD9zSaC9XINhuurDOTeEj5kyRADTOmr9V7YAAIA/AACAP834OrwU2JK6W1aYtzO7frIGHQm6Co6wNgAAgD8AAIA/zVd8PUjHjLrWYpS4/NVSs+0tJrje5Ks3AACAPwAAgD9mbF08XHsYuvZCh7b6sRkxSOKxu3bdojUAAIA/AACAP5pNmzt7Jom685TeOlWDgDVYLca61FoBugAAgD8AAIA/ZovOvPZsRbpatkU6oCJiNvk0krsCzmm5AACAPwAAgD/NXps8e0aBugrrArspWoS1t0VeuwVuGDoAAIA/AACAP5qXKbxSyK653Zp4ttucirHhZwI8uQSaNQAAgD8AAIA/5t8vPbhWhrmbOTy5gKdJMyFXnzp9EV44AACAPwAAgD/N1DC84aiiuu4TDbwG28m1avLbOfvcNjUAAIA/AACAP3MDhL0V0Sg/8ATtPYFSXL4kOSi9rQE4PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbnM4DLbHqMAWyUTegDjAF0lEdAlh7KW5YozHV9lChoBkdAYAkGGmDUVmgHTegDaAhHQJYgUGgSOBF1fZQoaAZHQGC9RDLKV6hoB03oA2gIR0CWIxMPz4DcdX2UKGgGR0BgDsPczqKQaAdN6ANoCEdAlibQeA/cFnV9lChoBkdAYzrapPykK2gHTegDaAhHQJYoJvybx3F1fZQoaAZHQGeVyI55qudoB03oA2gIR0CWLbZjhDPXdX2UKGgGR0Bg/OCyyD7JaAdN6ANoCEdAljAEVafSQnV9lChoBkdAZhjzTWoWHmgHTegDaAhHQJZG+I55qud1fZQoaAZHQGJeIr4Fia1oB03oA2gIR0CWYikZrHlwdX2UKGgGR0Bj5PYUWVNYaAdN6ANoCEdAlmbehK15SnV9lChoBkdAX6WIbfgrH2gHTegDaAhHQJZoL2Cdz4l1fZQoaAZHQGLm4Oc2BJ9oB03oA2gIR0CWddxS5y2hdX2UKGgGR0BknPoePq9oaAdN6ANoCEdAlnXxBRhttXV9lChoBkdAZ4lICEHt4WgHTegDaAhHQJZ+XluFYdR1fZQoaAZHQGHiwiJO32FoB03oA2gIR0CWfooKlYU4dX2UKGgGR0BlLLF+/gzhaAdN6ANoCEdAln9/uPV/c3V9lChoBkdAZTFomois4mgHTegDaAhHQJaBNVuJk5J1fZQoaAZHQGRTyuQp4KRoB03oA2gIR0CWgkCKJl8PdX2UKGgGR0BZEMXizcASaAdN6ANoCEdAloQ4gA6uGXV9lChoBkdAaD97pFCswWgHTegDaAhHQJaG4B+4LCx1fZQoaAZHQGZvkEkjX4FoB03oA2gIR0CWiEgqVhTgdX2UKGgGR0BiHuRDCxeLaAdN6ANoCEdAlo5QAhje9HV9lChoBkdAYOqhxo7FKmgHTegDaAhHQJaQk4ku6Et1fZQoaAZHQGSmYnOSntRoB03oA2gIR0CWrbku6ErYdX2UKGgGR0BoFRXuE25yaAdN6ANoCEdAlrHi7kGRm3V9lChoBkdAZ8Ohdt2s72gHTegDaAhHQJbHKglF+d91fZQoaAZHQGP6Fi8WbgFoB03oA2gIR0CWx/4UeuFIdX2UKGgGR0BwyTFS88LbaAdNDgJoCEdAls1fRzBAOnV9lChoBkdAbv8UHIIWxmgHTYECaAhHQJbOUClrM1V1fZQoaAZHQGPsFd9lVcVoB03oA2gIR0CW0o12q1gIdX2UKGgGR0BkbE2WIGhVaAdN6ANoCEdAltKaWszVMHV9lChoBkdAbmg801qFiGgHTXADaAhHQJbX9v99+gF1fZQoaAZHQGPRlL39JjFoB03oA2gIR0CW2ih4MWoFdX2UKGgGR0BkJZO+IuXeaAdN6ANoCEdAltpSx3V093V9lChoBkdAY90jLSuyNWgHTegDaAhHQJbbWl2vB8B1fZQoaAZHQGHg562OQyRoB03oA2gIR0CW3UXko4MndX2UKGgGR0AwFyHEdeY2aAdLpmgIR0CW3XidrftQdX2UKGgGR0Bo04BtDUmVaAdN6ANoCEdAlt5cmjTKDHV9lChoBkdAZYxPacqe9WgHTegDaAhHQJbj8Moc7yR1fZQoaAZHQGEt5jH4oJBoB03oA2gIR0CW8FiSq2jPdX2UKGgGR0BldwKx9oexaAdN6ANoCEdAlwWIc7yQP3V9lChoBkdAZm/KaG5+Y2gHTegDaAhHQJcIqrlvIfd1fZQoaAZHQGIK/5+H8CRoB03oA2gIR0CXHUMrVe8gdX2UKGgGR0BijkDlo11oaAdN6ANoCEdAlx4pjH4oJHV9lChoBkdAb1j6j3225WgHTU0CaAhHQJcf37YTTOR1fZQoaAZHQGigYE4ecQRoB03oA2gIR0CXJDUqhDgJdX2UKGgGR0BgK0C9ytFKaAdN6ANoCEdAlyUznaFmF3V9lChoBkdAZf6eQuEmIGgHTegDaAhHQJcqFJe3QUp1fZQoaAZHQG/5BcRlHz9oB01lA2gIR0CXLVkoWpIddX2UKGgGR0Bk1lzEJjUeaAdN6ANoCEdAlzBt/J/5L3V9lChoBkdAYIC8RL9MsmgHTegDaAhHQJcybNHH3lF1fZQoaAZHQGHyFTNt65ZoB03oA2gIR0CXMpRsuWa+dX2UKGgGR0BjVbnoxHoYaAdN6ANoCEdAlzN7aEi+tnV9lChoBkdAZZLm6GxlhGgHTegDaAhHQJc1LT8YQ8R1fZQoaAZHQGYZcM3IdU9oB03oA2gIR0CXNWBk7OmjdX2UKGgGR0BDg60QbuMNaAdLtmgIR0CXPg0ALiMpdX2UKGgGR0Bw5zWH1vl2aAdNsgJoCEdAl0TlKXfIjnV9lChoBkdAYisM1CPZI2gHTegDaAhHQJdFcMEzO5d1fZQoaAZHQHAXLXpW3jNoB01MAWgIR0CXXz+PRzBAdX2UKGgGR0BkiIVGkN4JaAdN6ANoCEdAl2DLGvOhTXV9lChoBkdAZNCiEg4ffWgHTegDaAhHQJdkZph4MWp1fZQoaAZHQGcENCqp97ZoB03oA2gIR0CXfqNB4UvgdX2UKGgGR0BendlmOEM9aAdN6ANoCEdAl4AvuG9HtnV9lChoBkdAZAXOCXhOxmgHTegDaAhHQJeD+6vq1PZ1fZQoaAZHQGCK0HIIWxhoB03oA2gIR0CXhOARkEs8dX2UKGgGR0Bi3GPFNtZWaAdN6ANoCEdAl4km4EwFknV9lChoBkdASBGP7vXsgWgHS5loCEdAl4kz850bLnV9lChoBkdAYfr5Pdl/Y2gHTegDaAhHQJeLxgKF7D51fZQoaAZHQG+POCoS+QFoB029A2gIR0CXi9XU6PsBdX2UKGgGR0BmM0CeVcD9aAdN6ANoCEdAl49bcCYCyXV9lChoBkdAZv7/FzdUKmgHTegDaAhHQJeQK7cwg1Z1fZQoaAZHQGPSTfrKNhpoB03oA2gIR0CXkXkjopx4dX2UKGgGR0Bm9i5CngpCaAdN6ANoCEdAl5GfBvaURnV9lChoBkdAZ6a2tMfzSWgHTegDaAhHQJeZCLGaQV91fZQoaAZHQHBwUuDjBEdoB02eA2gIR0CXmvGgBcRldX2UKGgGR0BxnGhSLqD9aAdNVAFoCEdAl5sSW/rSmnV9lChoBkdAcZWFfReC1GgHTTkCaAhHQJeeAEMb3oN1fZQoaAZHQHCerjtG/etoB02UA2gIR0CXszf5DZ13dX2UKGgGR0BwaaEkB0ZFaAdNlQFoCEdAl7qsNpdrwnV9lChoBkdAZDD863iJf2gHTegDaAhHQJe9JgSeyzJ1fZQoaAZHQGXJBUJfICFoB03oA2gIR0CXwQVi4J/odX2UKGgGR0Bi+EQPI4lyaAdN6ANoCEdAl9m67Ackt3V9lChoBkdAYsLIFNcnmmgHTegDaAhHQJfaksunMt91fZQoaAZHQGeYhQvYe1doB03oA2gIR0CX3qMnJDE4dX2UKGgGR0Bm9/bVSXMRaAdN6ANoCEdAl+EsNhE0BXV9lChoBkdAaDRrRjSXt2gHTegDaAhHQJfhPAj6eoV1fZQoaAZHQGQHWdupCKJoB03oA2gIR0CX5Kh9LHuJdX2UKGgGR0BiSgwM6RyPaAdN6ANoCEdAl+VqlDWsinV9lChoBkdAZ5EJtSAH3WgHTegDaAhHQJfmojiXIEN1fZQoaAZHQF7vun/DLr5oB03oA2gIR0CX5sOd5IH1dX2UKGgGR0Bw4QZIg/1QaAdNcAFoCEdAl+ddXtBv73V9lChoBkdAaGXSSeRPoGgHTegDaAhHQJftbqcEvCd1fZQoaAZHQHJUq+FlCkZoB00rAmgIR0CX7r1ZDArQdX2UKGgGR0BljzsSkCV9aAdN6ANoCEdAl++Egr6LwXV9lChoBkdAaUBQ2uPmxWgHTegDaAhHQJfzMkjX4CZ1fZQoaAZHQHEbdg0CRwJoB02LAWgIR0CX9w69TP0JdX2UKGgGR0By7E6cRUWEaAdNKwFoCEdAl/g4GD+R5nV9lChoBkdAcZbxJd0JW2gHTWwDaAhHQJf+jtBv73x1fZQoaAZHQF1AZBLPD51oB03oA2gIR0CYDi/SYw7DdX2UKGgGR0BxAVA5aNdaaAdN9AJoCEdAmA77qt5lfHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a224b2ed84e5c50922bef730532cf4e237dcd33a73c7fea064ffce266a1ee6f
|
3 |
+
size 148054
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e528176d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e52817760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e528177f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e52817880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8e52817910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8e528179a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e52817a30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e52817ac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8e52817b50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e52817be0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e52817c70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e52817d00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8e5ab95d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1700706980602356018,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOnaj3DhUC6ptSTux27Izir9Xm7pjePNwAAgD8AAIA/MwkKPTnBEz/IbSA8Ki9rvsHtgryds1u9AAAAAAAAAADmrwW9e/Kbutb1kzozc4QzD468umJSqrkAAIA/AACAPxqkZT329HS6D2TLulGYvLUfr8869tntOQAAgD8AAIA/Zmp/POx5lLmGqv633t2nsl4eaLpdkhc3AACAPwAAgD9zSaC9XINhuurDOTeEj5kyRADTOmr9V7YAAIA/AACAP834OrwU2JK6W1aYtzO7frIGHQm6Co6wNgAAgD8AAIA/zVd8PUjHjLrWYpS4/NVSs+0tJrje5Ks3AACAPwAAgD9mbF08XHsYuvZCh7b6sRkxSOKxu3bdojUAAIA/AACAP5pNmzt7Jom685TeOlWDgDVYLca61FoBugAAgD8AAIA/ZovOvPZsRbpatkU6oCJiNvk0krsCzmm5AACAPwAAgD/NXps8e0aBugrrArspWoS1t0VeuwVuGDoAAIA/AACAP5qXKbxSyK653Zp4ttucirHhZwI8uQSaNQAAgD8AAIA/5t8vPbhWhrmbOTy5gKdJMyFXnzp9EV44AACAPwAAgD/N1DC84aiiuu4TDbwG28m1avLbOfvcNjUAAIA/AACAP3MDhL0V0Sg/8ATtPYFSXL4kOSi9rQE4PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbnM4DLbHqMAWyUTegDjAF0lEdAlh7KW5YozHV9lChoBkdAYAkGGmDUVmgHTegDaAhHQJYgUGgSOBF1fZQoaAZHQGC9RDLKV6hoB03oA2gIR0CWIxMPz4DcdX2UKGgGR0BgDsPczqKQaAdN6ANoCEdAlibQeA/cFnV9lChoBkdAYzrapPykK2gHTegDaAhHQJYoJvybx3F1fZQoaAZHQGeVyI55qudoB03oA2gIR0CWLbZjhDPXdX2UKGgGR0Bg/OCyyD7JaAdN6ANoCEdAljAEVafSQnV9lChoBkdAZhjzTWoWHmgHTegDaAhHQJZG+I55qud1fZQoaAZHQGJeIr4Fia1oB03oA2gIR0CWYikZrHlwdX2UKGgGR0Bj5PYUWVNYaAdN6ANoCEdAlmbehK15SnV9lChoBkdAX6WIbfgrH2gHTegDaAhHQJZoL2Cdz4l1fZQoaAZHQGLm4Oc2BJ9oB03oA2gIR0CWddxS5y2hdX2UKGgGR0BknPoePq9oaAdN6ANoCEdAlnXxBRhttXV9lChoBkdAZ4lICEHt4WgHTegDaAhHQJZ+XluFYdR1fZQoaAZHQGHiwiJO32FoB03oA2gIR0CWfooKlYU4dX2UKGgGR0BlLLF+/gzhaAdN6ANoCEdAln9/uPV/c3V9lChoBkdAZTFomois4mgHTegDaAhHQJaBNVuJk5J1fZQoaAZHQGRTyuQp4KRoB03oA2gIR0CWgkCKJl8PdX2UKGgGR0BZEMXizcASaAdN6ANoCEdAloQ4gA6uGXV9lChoBkdAaD97pFCswWgHTegDaAhHQJaG4B+4LCx1fZQoaAZHQGZvkEkjX4FoB03oA2gIR0CWiEgqVhTgdX2UKGgGR0BiHuRDCxeLaAdN6ANoCEdAlo5QAhje9HV9lChoBkdAYOqhxo7FKmgHTegDaAhHQJaQk4ku6Et1fZQoaAZHQGSmYnOSntRoB03oA2gIR0CWrbku6ErYdX2UKGgGR0BoFRXuE25yaAdN6ANoCEdAlrHi7kGRm3V9lChoBkdAZ8Ohdt2s72gHTegDaAhHQJbHKglF+d91fZQoaAZHQGP6Fi8WbgFoB03oA2gIR0CWx/4UeuFIdX2UKGgGR0BwyTFS88LbaAdNDgJoCEdAls1fRzBAOnV9lChoBkdAbv8UHIIWxmgHTYECaAhHQJbOUClrM1V1fZQoaAZHQGPsFd9lVcVoB03oA2gIR0CW0o12q1gIdX2UKGgGR0BkbE2WIGhVaAdN6ANoCEdAltKaWszVMHV9lChoBkdAbmg801qFiGgHTXADaAhHQJbX9v99+gF1fZQoaAZHQGPRlL39JjFoB03oA2gIR0CW2ih4MWoFdX2UKGgGR0BkJZO+IuXeaAdN6ANoCEdAltpSx3V093V9lChoBkdAY90jLSuyNWgHTegDaAhHQJbbWl2vB8B1fZQoaAZHQGHg562OQyRoB03oA2gIR0CW3UXko4MndX2UKGgGR0AwFyHEdeY2aAdLpmgIR0CW3XidrftQdX2UKGgGR0Bo04BtDUmVaAdN6ANoCEdAlt5cmjTKDHV9lChoBkdAZYxPacqe9WgHTegDaAhHQJbj8Moc7yR1fZQoaAZHQGEt5jH4oJBoB03oA2gIR0CW8FiSq2jPdX2UKGgGR0BldwKx9oexaAdN6ANoCEdAlwWIc7yQP3V9lChoBkdAZm/KaG5+Y2gHTegDaAhHQJcIqrlvIfd1fZQoaAZHQGIK/5+H8CRoB03oA2gIR0CXHUMrVe8gdX2UKGgGR0BijkDlo11oaAdN6ANoCEdAlx4pjH4oJHV9lChoBkdAb1j6j3225WgHTU0CaAhHQJcf37YTTOR1fZQoaAZHQGigYE4ecQRoB03oA2gIR0CXJDUqhDgJdX2UKGgGR0BgK0C9ytFKaAdN6ANoCEdAlyUznaFmF3V9lChoBkdAZf6eQuEmIGgHTegDaAhHQJcqFJe3QUp1fZQoaAZHQG/5BcRlHz9oB01lA2gIR0CXLVkoWpIddX2UKGgGR0Bk1lzEJjUeaAdN6ANoCEdAlzBt/J/5L3V9lChoBkdAYIC8RL9MsmgHTegDaAhHQJcybNHH3lF1fZQoaAZHQGHyFTNt65ZoB03oA2gIR0CXMpRsuWa+dX2UKGgGR0BjVbnoxHoYaAdN6ANoCEdAlzN7aEi+tnV9lChoBkdAZZLm6GxlhGgHTegDaAhHQJc1LT8YQ8R1fZQoaAZHQGYZcM3IdU9oB03oA2gIR0CXNWBk7OmjdX2UKGgGR0BDg60QbuMNaAdLtmgIR0CXPg0ALiMpdX2UKGgGR0Bw5zWH1vl2aAdNsgJoCEdAl0TlKXfIjnV9lChoBkdAYisM1CPZI2gHTegDaAhHQJdFcMEzO5d1fZQoaAZHQHAXLXpW3jNoB01MAWgIR0CXXz+PRzBAdX2UKGgGR0BkiIVGkN4JaAdN6ANoCEdAl2DLGvOhTXV9lChoBkdAZNCiEg4ffWgHTegDaAhHQJdkZph4MWp1fZQoaAZHQGcENCqp97ZoB03oA2gIR0CXfqNB4UvgdX2UKGgGR0BendlmOEM9aAdN6ANoCEdAl4AvuG9HtnV9lChoBkdAZAXOCXhOxmgHTegDaAhHQJeD+6vq1PZ1fZQoaAZHQGCK0HIIWxhoB03oA2gIR0CXhOARkEs8dX2UKGgGR0Bi3GPFNtZWaAdN6ANoCEdAl4km4EwFknV9lChoBkdASBGP7vXsgWgHS5loCEdAl4kz850bLnV9lChoBkdAYfr5Pdl/Y2gHTegDaAhHQJeLxgKF7D51fZQoaAZHQG+POCoS+QFoB029A2gIR0CXi9XU6PsBdX2UKGgGR0BmM0CeVcD9aAdN6ANoCEdAl49bcCYCyXV9lChoBkdAZv7/FzdUKmgHTegDaAhHQJeQK7cwg1Z1fZQoaAZHQGPSTfrKNhpoB03oA2gIR0CXkXkjopx4dX2UKGgGR0Bm9i5CngpCaAdN6ANoCEdAl5GfBvaURnV9lChoBkdAZ6a2tMfzSWgHTegDaAhHQJeZCLGaQV91fZQoaAZHQHBwUuDjBEdoB02eA2gIR0CXmvGgBcRldX2UKGgGR0BxnGhSLqD9aAdNVAFoCEdAl5sSW/rSmnV9lChoBkdAcZWFfReC1GgHTTkCaAhHQJeeAEMb3oN1fZQoaAZHQHCerjtG/etoB02UA2gIR0CXszf5DZ13dX2UKGgGR0BwaaEkB0ZFaAdNlQFoCEdAl7qsNpdrwnV9lChoBkdAZDD863iJf2gHTegDaAhHQJe9JgSeyzJ1fZQoaAZHQGXJBUJfICFoB03oA2gIR0CXwQVi4J/odX2UKGgGR0Bi+EQPI4lyaAdN6ANoCEdAl9m67Ackt3V9lChoBkdAYsLIFNcnmmgHTegDaAhHQJfaksunMt91fZQoaAZHQGeYhQvYe1doB03oA2gIR0CX3qMnJDE4dX2UKGgGR0Bm9/bVSXMRaAdN6ANoCEdAl+EsNhE0BXV9lChoBkdAaDRrRjSXt2gHTegDaAhHQJfhPAj6eoV1fZQoaAZHQGQHWdupCKJoB03oA2gIR0CX5Kh9LHuJdX2UKGgGR0BiSgwM6RyPaAdN6ANoCEdAl+VqlDWsinV9lChoBkdAZ5EJtSAH3WgHTegDaAhHQJfmojiXIEN1fZQoaAZHQF7vun/DLr5oB03oA2gIR0CX5sOd5IH1dX2UKGgGR0Bw4QZIg/1QaAdNcAFoCEdAl+ddXtBv73V9lChoBkdAaGXSSeRPoGgHTegDaAhHQJftbqcEvCd1fZQoaAZHQHJUq+FlCkZoB00rAmgIR0CX7r1ZDArQdX2UKGgGR0BljzsSkCV9aAdN6ANoCEdAl++Egr6LwXV9lChoBkdAaUBQ2uPmxWgHTegDaAhHQJfzMkjX4CZ1fZQoaAZHQHEbdg0CRwJoB02LAWgIR0CX9w69TP0JdX2UKGgGR0By7E6cRUWEaAdNKwFoCEdAl/g4GD+R5nV9lChoBkdAcZbxJd0JW2gHTWwDaAhHQJf+jtBv73x1fZQoaAZHQF1AZBLPD51oB03oA2gIR0CYDi/SYw7DdX2UKGgGR0BxAVA5aNdaaAdN9AJoCEdAmA77qt5lfHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44337ee4eaf48a468ae56eff32b21ed484b7b71d2cab0222ddc977fcf53f8da0
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad533507fdeeba4036b429ad26499befbe13e7574ab07dc90524c219306ebdc4
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.43955139999997, "std_reward": 15.881276004773055, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-23T03:06:47.814979"}
|