File size: 4,395 Bytes
c49c82b
 
 
 
 
be11088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c49c82b
7627016
c49c82b
73a8a9c
 
 
 
c9b642f
c49c82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be11088
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Qwen/Qwen2.5-7B-Instruct-1M
- bunnycore/Qwen-2.5-7B-1M-RRP-v1-lora
model-index:
- name: Qwen2.5-7B-RRP-1M
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 74.81
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-7B-RRP-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 35.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-7B-RRP-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 28.17
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-7B-RRP-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.05
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-7B-RRP-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.8
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-7B-RRP-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 36.29
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-7B-RRP-1M
      name: Open LLM Leaderboard
---
LoRA trained on a thinking/reasoning and roleplaying dataset and then merged with the Qwen2.5-7B-Instruct-1M model, which supports up to 1 million token context lengths.

## What this Model Can Do:

- Roleplay: Engage in creative conversations and storytelling!
- Reasoning: Tackle problems and answer your questions in a logical way (thanks to the LoRA layer).
- Thinking: Use the ```<think>``` tag in your system prompts to activate the model's thinking abilities.

### Merge Method

This model was merged using the Passthrough merge method using [Qwen/Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) + [bunnycore/Qwen-2.5-7B-1M-RRP-v1-lora](https://huggingface.co/bunnycore/Qwen-2.5-7B-1M-RRP-v1-lora) as a base.

### Models Merged

The following models were included in the merge:


### Configuration

The following YAML configuration was used to produce this model:

```yaml

base_model: Qwen/Qwen2.5-7B-Instruct-1M+bunnycore/Qwen-2.5-7B-1M-RRP-v1-lora
dtype: bfloat16
merge_method: passthrough
models:
  - model: Qwen/Qwen2.5-7B-Instruct-1M+bunnycore/Qwen-2.5-7B-1M-RRP-v1-lora
tokenizer_source: Qwen/Qwen2.5-7B-Instruct-1M

```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/bunnycore__Qwen2.5-7B-RRP-1M-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |32.96|
|IFEval (0-Shot)    |74.81|
|BBH (3-Shot)       |35.65|
|MATH Lvl 5 (4-Shot)|28.17|
|GPQA (0-shot)      | 7.05|
|MuSR (0-shot)      |15.80|
|MMLU-PRO (5-shot)  |36.29|