File size: 917 Bytes
c3c5cac
 
f988250
c121225
f988250
b44ad64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c121225
 
b44ad64
c121225
 
ecc4281
b44ad64
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
license: mit
language:
  - en
tags:
  - Atari-Breakout-v0
  - deep-reinforcement-learning
  - reinforcement-learning
model-index:
  - name: Deep Q Learning
    results:
      - task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: Atari-Breakout-v0
          type: Atari-Breakout-v0
        metrics:
          - type: mean_reward
            value: 29.00
            name: mean_reward
            verified: false
---

# **Deep Q-Learning based Agent for Atari Breakout**

The agent showcased in this space is trained using the Deep Q-Learning algorithm.
The agent was trained for $$3500$$ episodes with a learning rate of $$0.00001$$ and an epsilon value that decreased linearly over time.

## Usage

```bash
python main.py --model_folder <Name of the folder> --model_name <Name of the model> --save_video 1 --video_name <Name of the video file>
```