File size: 4,937 Bytes
03beda8
 
 
 
 
 
 
 
 
 
ffde411
03beda8
 
 
 
 
 
 
 
 
 
 
 
 
ffde411
03beda8
 
 
 
 
ffde411
03beda8
 
 
ffde411
 
03beda8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffde411
03beda8
 
 
 
 
 
 
 
ffde411
03beda8
 
 
 
 
ffde411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03beda8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan7
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.85
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan7

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5569
- Accuracy: 0.85

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.85  | 4    | 2.2836          | 0.14     |
| 2.2984        | 1.92  | 9    | 2.2574          | 0.18     |
| 2.2856        | 2.99  | 14   | 2.2060          | 0.32     |
| 2.2478        | 3.84  | 18   | 2.1331          | 0.37     |
| 2.1775        | 4.91  | 23   | 1.9859          | 0.47     |
| 2.0557        | 5.97  | 28   | 1.8086          | 0.52     |
| 1.8764        | 6.83  | 32   | 1.6783          | 0.53     |
| 1.7133        | 7.89  | 37   | 1.5235          | 0.54     |
| 1.5661        | 8.96  | 42   | 1.4048          | 0.58     |
| 1.4544        | 9.81  | 46   | 1.3279          | 0.6      |
| 1.3365        | 10.88 | 51   | 1.2591          | 0.67     |
| 1.2228        | 11.95 | 56   | 1.1587          | 0.7      |
| 1.1298        | 12.8  | 60   | 1.1476          | 0.68     |
| 1.0601        | 13.87 | 65   | 1.0066          | 0.77     |
| 0.9886        | 14.93 | 70   | 0.9855          | 0.76     |
| 0.923         | 16.0  | 75   | 0.9767          | 0.73     |
| 0.923         | 16.85 | 79   | 0.8896          | 0.79     |
| 0.8539        | 17.92 | 84   | 0.8421          | 0.78     |
| 0.788         | 18.99 | 89   | 0.8270          | 0.8      |
| 0.7253        | 19.84 | 93   | 0.7764          | 0.82     |
| 0.6523        | 20.91 | 98   | 0.6998          | 0.85     |
| 0.5853        | 21.97 | 103  | 0.6891          | 0.87     |
| 0.5372        | 22.83 | 107  | 0.7106          | 0.8      |
| 0.4815        | 23.89 | 112  | 0.6542          | 0.82     |
| 0.4461        | 24.96 | 117  | 0.6136          | 0.87     |
| 0.3841        | 25.81 | 121  | 0.6338          | 0.81     |
| 0.3505        | 26.88 | 126  | 0.6082          | 0.87     |
| 0.3143        | 27.95 | 131  | 0.5776          | 0.88     |
| 0.2913        | 28.8  | 135  | 0.5833          | 0.86     |
| 0.2519        | 29.87 | 140  | 0.5543          | 0.89     |
| 0.2234        | 30.93 | 145  | 0.5606          | 0.84     |
| 0.1994        | 32.0  | 150  | 0.5726          | 0.86     |
| 0.1994        | 32.85 | 154  | 0.5391          | 0.86     |
| 0.1789        | 33.92 | 159  | 0.5908          | 0.83     |
| 0.1615        | 34.99 | 164  | 0.5498          | 0.85     |
| 0.1444        | 35.84 | 168  | 0.5389          | 0.85     |
| 0.1303        | 36.91 | 173  | 0.5829          | 0.84     |
| 0.1192        | 37.97 | 178  | 0.5278          | 0.87     |
| 0.1074        | 38.83 | 182  | 0.6011          | 0.83     |
| 0.1001        | 39.89 | 187  | 0.5260          | 0.87     |
| 0.0935        | 40.96 | 192  | 0.5778          | 0.84     |
| 0.0885        | 41.81 | 196  | 0.5563          | 0.86     |
| 0.0827        | 42.88 | 201  | 0.5556          | 0.86     |
| 0.0785        | 43.95 | 206  | 0.5807          | 0.84     |
| 0.0767        | 44.8  | 210  | 0.5649          | 0.85     |
| 0.0722        | 45.87 | 215  | 0.5551          | 0.85     |
| 0.0718        | 46.93 | 220  | 0.5432          | 0.86     |
| 0.0701        | 48.0  | 225  | 0.5720          | 0.85     |
| 0.0701        | 48.85 | 229  | 0.5695          | 0.85     |
| 0.068         | 49.92 | 234  | 0.5642          | 0.85     |
| 0.0673        | 50.99 | 239  | 0.5571          | 0.85     |
| 0.0672        | 51.2  | 240  | 0.5569          | 0.85     |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3