--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan4 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.78 --- # distilhubert-finetuned-gtzan4 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0945 - Accuracy: 0.78 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.85 | 4 | 2.2991 | 0.06 | | 2.2997 | 1.92 | 9 | 2.2668 | 0.28 | | 2.2819 | 2.99 | 14 | 2.1877 | 0.33 | | 2.2336 | 3.84 | 18 | 2.1023 | 0.47 | | 2.1493 | 4.91 | 23 | 1.9895 | 0.52 | | 2.0571 | 5.97 | 28 | 1.8745 | 0.51 | | 1.9341 | 6.83 | 32 | 1.7838 | 0.57 | | 1.8274 | 7.89 | 37 | 1.6784 | 0.64 | | 1.724 | 8.96 | 42 | 1.5859 | 0.66 | | 1.6407 | 9.81 | 46 | 1.5234 | 0.66 | | 1.5593 | 10.88 | 51 | 1.4508 | 0.7 | | 1.4735 | 11.95 | 56 | 1.3982 | 0.69 | | 1.4185 | 12.8 | 60 | 1.3501 | 0.72 | | 1.3613 | 13.87 | 65 | 1.3131 | 0.74 | | 1.3099 | 14.93 | 70 | 1.2742 | 0.72 | | 1.2762 | 16.0 | 75 | 1.2485 | 0.73 | | 1.2762 | 16.85 | 79 | 1.2102 | 0.74 | | 1.2379 | 17.92 | 84 | 1.1931 | 0.75 | | 1.193 | 18.99 | 89 | 1.1647 | 0.75 | | 1.1863 | 19.84 | 93 | 1.1488 | 0.77 | | 1.1435 | 20.91 | 98 | 1.1349 | 0.78 | | 1.1424 | 21.97 | 103 | 1.1166 | 0.79 | | 1.0961 | 22.83 | 107 | 1.1025 | 0.78 | | 1.0887 | 23.89 | 112 | 1.0993 | 0.78 | | 1.0977 | 24.96 | 117 | 1.0952 | 0.78 | | 1.0661 | 25.6 | 120 | 1.0945 | 0.78 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3