File size: 930 Bytes
1a883b1
97724bf
 
 
3cb030e
97724bf
 
 
 
 
 
 
1a883b1
 
97724bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language:
- en
license: apache-2.0
tags:
- hearing loss
- challenge
- signal processing
- source separation
- audio
- audio-to-audio
- Causal
---

# Cadenza Challenge: CAD2-Task1

A Causal Clarinet/Others separation model for the CAD2-Task2 baseline system.

* Architecture: ConvTasNet (Kaituo XU) with multichannel support (Alexandre Defossez).
* Parameters:
  * B: 256
  * C: 2
  * H: 512
  * L: 20
  * N: 256
  * P: 3
  * R: 3
  * X: 8
  * audio_channels: 2
  * causal: true
  * mask_nonlinear: relu
  * norm_type: cLN
* training:
  * sample_rate: 44100
  * samples_per_track: 64
  * segment: 5.0
  * aggregate: 2
  * batch_size: 4
  * early_stop: true
  * epochs: 200


## Dataset
The model was trained using EnsembleSet and CadenzaWoodwind datasets.

## How to use

```
from tasnet import ConvTasNetStereo

model = ConvTasNetStereo.from_pretrained(
    "cadenzachallenge/ConvTasNet_Clarinet_Causal"
).cpu()

```