whisper-large-id / README.md
cahya's picture
fine tuneing with add. datasets (magic-data, fleurs)
63e09b0
metadata
language:
  - id
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - magic_data
  - TITML
metrics:
  - wer
model-index:
  - name: Whisper Large Indonesian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 id
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 6.248270773771097

Whisper Large Indonesian

This model is a fine-tuned version of openai/whisper-large on the mozilla-foundation/common_voice_11_0, magic_data, titml id dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2034
  • Wer: 6.2483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1516 0.5 1000 0.1730 6.5664
0.1081 1.0 2000 0.1638 6.3682
0.0715 1.49 3000 0.1803 6.2713
0.1009 1.99 4000 0.1796 6.2667
0.0387 2.49 5000 0.2054 6.4927
0.0494 2.99 6000 0.2034 6.2483
0.0259 3.48 7000 0.2226 6.3497
0.0265 3.98 8000 0.2274 6.4004
0.0232 4.48 9000 0.2443 6.5618
0.015 4.98 10000 0.2413 6.4927

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2