PhyloGPN / tokenization_phylogpn.py
calbors's picture
Upload tokenizer
4dae406 verified
raw
history blame
1.56 kB
from transformers import PreTrainedTokenizer
from typing import List, Dict, Optional, Tuple
class PhyloGPNTokenizer(PreTrainedTokenizer):
model_input_names = ["input_ids"]
def __init__(self, model_max_length: int = None, unk_token="N", pad_token="-", bos_token=None, eos_token=None, sep_token=None, cls_token=None, mask_token=None, **kwargs):
self.model_max_length = model_max_length
self._vocab = {k: v for v, k in enumerate("ACGTN-")}
add_prefix_space = kwargs.pop("add_prefix_space", False)
padding_side = kwargs.pop("padding_side", "left")
super().__init__(
model_max_length=model_max_length,
unk_token=unk_token,
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
padding_side=padding_side,
**kwargs,
)
def _tokenize(self, seq: str) -> List[str]:
return list(seq)
def _convert_token_to_id(self, token: str) -> int:
return self._vocab.get(token, self._vocab["N"])
def _convert_id_to_token(self, idx: int) -> str:
return self._vocab[idx]
@property
def vocab_size(self) -> int:
return len(self._vocab)
def get_vocab(self) -> Dict[str, int]:
return self._vocab
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple:
return ()