Upload model
Browse files- README.md +199 -0
- config.json +18 -0
- configuration_revar.py +13 -0
- model.safetensors +3 -0
- modeling_revar.py +267 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ReVarModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_revar.ReVarConfig",
|
7 |
+
"AutoModel": "modeling_revar.ReVarModel"
|
8 |
+
},
|
9 |
+
"inner_dim": 480,
|
10 |
+
"kernel_size": 5,
|
11 |
+
"model_type": "revar",
|
12 |
+
"num_output_channels": 5,
|
13 |
+
"num_stacks": 20,
|
14 |
+
"outer_dim": 960,
|
15 |
+
"stack_size": 2,
|
16 |
+
"torch_dtype": "float32",
|
17 |
+
"transformers_version": "4.43.3"
|
18 |
+
}
|
configuration_revar.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class ReVarConfig(PretrainedConfig):
|
4 |
+
model_type = "revar"
|
5 |
+
|
6 |
+
def __init__(self, outer_dim: int = 960, inner_dim: int = 480, kernel_size: int = 5, stack_size: int = 2, num_stacks: int = 20, num_output_channels: int = 5, **kwargs):
|
7 |
+
self.outer_dim = outer_dim
|
8 |
+
self.inner_dim = inner_dim
|
9 |
+
self.kernel_size = kernel_size
|
10 |
+
self.stack_size = stack_size
|
11 |
+
self.num_stacks = num_stacks
|
12 |
+
self.num_output_channels= num_output_channels
|
13 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76ec9fb675327b7d1069eb69efb02800d53c51c6cdee67a72cc48e64ff2a39ce
|
3 |
+
size 332860784
|
modeling_revar.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
from itertools import product
|
3 |
+
from collections import defaultdict
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
import torch.nn.utils.parametrize as parametrize
|
8 |
+
|
9 |
+
|
10 |
+
def check_if_involution(indices: List[int]) -> bool:
|
11 |
+
return all(indices[indices[idx]] == idx for idx in range(len(indices)))
|
12 |
+
|
13 |
+
|
14 |
+
def get_conv1d_output_length(
|
15 |
+
input_length: int, kernel_size: int, stride_size: int = 1, pad_size: int = 0, dilation_rate: int = 1
|
16 |
+
) -> int:
|
17 |
+
return (input_length + 2 * pad_size - dilation_rate * (kernel_size - 1) - 1) // stride_size + 1
|
18 |
+
|
19 |
+
|
20 |
+
def get_involution_indices(size: int) -> List[int]:
|
21 |
+
return list(reversed(range(size)))
|
22 |
+
|
23 |
+
|
24 |
+
class RCEWeight(nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self, input_involution_indices: List[int], output_involution_indices: List[int]
|
27 |
+
):
|
28 |
+
if not check_if_involution(input_involution_indices) or not check_if_involution(
|
29 |
+
output_involution_indices):
|
30 |
+
raise ValueError(
|
31 |
+
"`input_involution_indices` and `output_involution_indices` must be involutions"
|
32 |
+
)
|
33 |
+
|
34 |
+
super().__init__()
|
35 |
+
self._input_involution_indices = input_involution_indices
|
36 |
+
self._output_involution_indices = output_involution_indices
|
37 |
+
self._input_involution_index_tensor = None
|
38 |
+
self._output_involution_index_tensor = None
|
39 |
+
self._device = None
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
42 |
+
if self._device != x.device:
|
43 |
+
self._input_involution_index_tensor = torch.tensor(self._input_involution_indices, device=x.device)
|
44 |
+
self._output_involution_index_tensor = torch.tensor(self._output_involution_indices, device=x.device)
|
45 |
+
self._device = x.device
|
46 |
+
|
47 |
+
output_involution_indices = self._output_involution_index_tensor
|
48 |
+
input_involution_indices = self._input_involution_index_tensor
|
49 |
+
return (x + x[output_involution_indices][:, input_involution_indices].flip(2)) / 2
|
50 |
+
|
51 |
+
|
52 |
+
class IEBias(nn.Module):
|
53 |
+
def __init__(self, involution_indices: List[int]):
|
54 |
+
if not check_if_involution(involution_indices):
|
55 |
+
raise ValueError("`involution_indices` must be an involution")
|
56 |
+
|
57 |
+
super().__init__()
|
58 |
+
self._involution_indices = involution_indices
|
59 |
+
self._involution_index_tensor = None
|
60 |
+
self._device = None
|
61 |
+
|
62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
+
if self._device != x.device:
|
64 |
+
self._involution_index_tensor = torch.tensor(self._involution_indices, device=x.device)
|
65 |
+
self._device = x.device
|
66 |
+
|
67 |
+
involution_indices = self._involution_index_tensor
|
68 |
+
return (x + x[involution_indices]) / 2
|
69 |
+
|
70 |
+
|
71 |
+
class IEWeight(nn.Module):
|
72 |
+
def __init__(
|
73 |
+
self, input_involution_indices: List[int], output_involution_indices: List[int]
|
74 |
+
):
|
75 |
+
if not check_if_involution(input_involution_indices) or not check_if_involution(
|
76 |
+
output_involution_indices):
|
77 |
+
raise ValueError(
|
78 |
+
"`input_involution_indices` and `output_involution_indices` must be involutions"
|
79 |
+
)
|
80 |
+
|
81 |
+
super().__init__()
|
82 |
+
self._input_involution_indices = input_involution_indices
|
83 |
+
self._output_involution_indices = output_involution_indices
|
84 |
+
self._input_involution_index_tensor = None
|
85 |
+
self._output_involution_index_tensor = None
|
86 |
+
self._device = None
|
87 |
+
|
88 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
89 |
+
if self._device != x.device:
|
90 |
+
self._input_involution_index_tensor = torch.tensor(self._input_involution_indices, device=x.device)
|
91 |
+
self._output_involution_index_tensor = torch.tensor(self._output_involution_indices, device=x.device)
|
92 |
+
self._device = x.device
|
93 |
+
|
94 |
+
output_involution_indices = self._output_involution_index_tensor
|
95 |
+
input_involution_indices = self._input_involution_index_tensor
|
96 |
+
return (x + x[input_involution_indices][:, output_involution_indices]) / 2
|
97 |
+
|
98 |
+
|
99 |
+
class RCEByteNetBlock(nn.Module):
|
100 |
+
def __init__(self, outer_involution_indices: List[int], inner_dim: int, kernel_size: int, dilation_rate: int = 1):
|
101 |
+
outer_dim = len(outer_involution_indices)
|
102 |
+
|
103 |
+
if outer_dim % 2 != 0:
|
104 |
+
raise ValueError("`outer_involution_indices` must have an even length")
|
105 |
+
|
106 |
+
if inner_dim % 2 != 0:
|
107 |
+
raise ValueError("`inner_dim` must be even")
|
108 |
+
|
109 |
+
if kernel_size % 2 == 0:
|
110 |
+
raise ValueError("`kernel_size` must be odd")
|
111 |
+
|
112 |
+
super().__init__()
|
113 |
+
inner_involution_indices = get_involution_indices(inner_dim)
|
114 |
+
|
115 |
+
layers = [
|
116 |
+
nn.GroupNorm(1, outer_dim),
|
117 |
+
nn.GELU(),
|
118 |
+
nn.Conv1d(outer_dim, inner_dim, kernel_size=1),
|
119 |
+
nn.GroupNorm(1, inner_dim),
|
120 |
+
nn.GELU(),
|
121 |
+
nn.Conv1d(inner_dim, inner_dim, kernel_size, dilation=dilation_rate),
|
122 |
+
nn.GroupNorm(1, inner_dim),
|
123 |
+
nn.GELU(),
|
124 |
+
nn.Conv1d(inner_dim, outer_dim, kernel_size=1)
|
125 |
+
]
|
126 |
+
parametrize.register_parametrization(
|
127 |
+
layers[2], "weight",
|
128 |
+
RCEWeight(outer_involution_indices, inner_involution_indices)
|
129 |
+
)
|
130 |
+
parametrize.register_parametrization(
|
131 |
+
layers[2], "bias",
|
132 |
+
IEBias(inner_involution_indices)
|
133 |
+
)
|
134 |
+
parametrize.register_parametrization(
|
135 |
+
layers[5], "weight",
|
136 |
+
RCEWeight(inner_involution_indices, inner_involution_indices)
|
137 |
+
)
|
138 |
+
parametrize.register_parametrization(
|
139 |
+
layers[5], "bias",
|
140 |
+
IEBias(inner_involution_indices)
|
141 |
+
)
|
142 |
+
parametrize.register_parametrization(
|
143 |
+
layers[8], "weight",
|
144 |
+
RCEWeight(inner_involution_indices, outer_involution_indices)
|
145 |
+
)
|
146 |
+
parametrize.register_parametrization(
|
147 |
+
layers[8], "bias",
|
148 |
+
IEBias(outer_involution_indices)
|
149 |
+
)
|
150 |
+
self.layers = nn.Sequential(*layers)
|
151 |
+
self._kernel_size = kernel_size
|
152 |
+
self._dilation_rate = dilation_rate
|
153 |
+
|
154 |
+
@property
|
155 |
+
def kernel_size(self):
|
156 |
+
return self._kernel_size
|
157 |
+
|
158 |
+
@property
|
159 |
+
def dilation_rate(self):
|
160 |
+
return self._dilation_rate
|
161 |
+
|
162 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
163 |
+
input_length = x.shape[2]
|
164 |
+
output_length = get_conv1d_output_length(input_length, self.kernel_size, dilation_rate=self.dilation_rate)
|
165 |
+
a = (input_length - output_length) // 2
|
166 |
+
|
167 |
+
if a == 0:
|
168 |
+
return self.layers(x) + x
|
169 |
+
|
170 |
+
return self.layers(x) + x[:, :, a:-a]
|
171 |
+
|
172 |
+
|
173 |
+
class RCEByteNet(nn.Module):
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
input_involution_indices: List[int],
|
177 |
+
output_involution_indices: List[int],
|
178 |
+
dilation_rates: List[int],
|
179 |
+
outer_dim: int,
|
180 |
+
inner_dim: int,
|
181 |
+
kernel_size: int,
|
182 |
+
num_output_channels: int = 1,
|
183 |
+
pad_token_idx: Optional[int] = None
|
184 |
+
):
|
185 |
+
if pad_token_idx is not None and input_involution_indices[pad_token_idx] != pad_token_idx:
|
186 |
+
raise ValueError("`input_involution_indices[pad_token_idx]` must be equal to `pad_token_idx`")
|
187 |
+
|
188 |
+
super().__init__()
|
189 |
+
vocab_size = len(input_involution_indices)
|
190 |
+
outer_involution_indices = get_involution_indices(outer_dim)
|
191 |
+
|
192 |
+
self.embedding = nn.Embedding(vocab_size, outer_dim, padding_idx=pad_token_idx)
|
193 |
+
parametrize.register_parametrization(
|
194 |
+
self.embedding, "weight",
|
195 |
+
IEWeight(input_involution_indices, outer_involution_indices)
|
196 |
+
)
|
197 |
+
nn.init.normal_(self.embedding.weight, std=2**0.5)
|
198 |
+
self.embedding.weight.data[self.embedding.padding_idx].zero_()
|
199 |
+
self.embedding.requires_grad = False
|
200 |
+
|
201 |
+
blocks = []
|
202 |
+
receptive_field_size = 1
|
203 |
+
|
204 |
+
for r in dilation_rates:
|
205 |
+
blocks.append(RCEByteNetBlock(outer_involution_indices, inner_dim, kernel_size, dilation_rate=r))
|
206 |
+
receptive_field_size += (kernel_size - 1) * r
|
207 |
+
|
208 |
+
self.blocks = nn.Sequential(*blocks)
|
209 |
+
|
210 |
+
self._num_output_channels = num_output_channels
|
211 |
+
output_dim = len(output_involution_indices)
|
212 |
+
output_involution_indices = [
|
213 |
+
i * len(output_involution_indices) + j
|
214 |
+
for i, j in product(range(num_output_channels), output_involution_indices)
|
215 |
+
]
|
216 |
+
|
217 |
+
self.output_layers = nn.Sequential(
|
218 |
+
nn.GroupNorm(1, outer_dim), nn.GELU(),
|
219 |
+
nn.Conv1d(outer_dim, output_dim * num_output_channels, kernel_size=1)
|
220 |
+
)
|
221 |
+
parametrize.register_parametrization(
|
222 |
+
self.output_layers[-1], "weight", RCEWeight(outer_involution_indices, output_involution_indices)
|
223 |
+
)
|
224 |
+
parametrize.register_parametrization(self.output_layers[-1], "bias", IEBias(output_involution_indices))
|
225 |
+
|
226 |
+
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
227 |
+
x = self.blocks(self.embedding(input_tensor).swapaxes(1, 2))
|
228 |
+
output_tensor = self.output_layers(x).swapaxes(1, 2)
|
229 |
+
output_dim = output_tensor.shape[2] // self._num_output_channels
|
230 |
+
shape = list(output_tensor.shape[:-1]) + [self._num_output_channels, output_dim]
|
231 |
+
return output_tensor.reshape(shape)
|
232 |
+
|
233 |
+
from transformers import PreTrainedModel
|
234 |
+
from .configuration_revar import ReVarConfig
|
235 |
+
|
236 |
+
class ReVarModel(PreTrainedModel):
|
237 |
+
config_class = ReVarConfig
|
238 |
+
|
239 |
+
def __init__(self, config, **kwargs):
|
240 |
+
super().__init__(config, **kwargs)
|
241 |
+
|
242 |
+
dilation_rates = config.num_stacks * [config.kernel_size**i for i in range(0, config.stack_size)]
|
243 |
+
|
244 |
+
self._model = RCEByteNet(
|
245 |
+
input_involution_indices = [3, 2, 1, 0, 4, 5],
|
246 |
+
output_involution_indices=[3, 2, 1, 0],
|
247 |
+
dilation_rates=dilation_rates,
|
248 |
+
outer_dim = config.outer_dim,
|
249 |
+
inner_dim = config.inner_dim,
|
250 |
+
kernel_size=config.kernel_size,
|
251 |
+
num_output_channels=config.num_output_channels,
|
252 |
+
pad_token_idx=5
|
253 |
+
)
|
254 |
+
|
255 |
+
def get_embeddings(self, input_ids: torch.Tensor):
|
256 |
+
return self._model.get_embeddings(input_ids)
|
257 |
+
|
258 |
+
def forward(self, input_ids: torch.Tensor):
|
259 |
+
output_tensor = self._model(input_ids)
|
260 |
+
|
261 |
+
results = defaultdict(dict)
|
262 |
+
|
263 |
+
for i, cell_type in enumerate(["A549", "HepG2", "K562", "SK-N-SH", "HCT116"]):
|
264 |
+
for j, allele in enumerate("ACGT"):
|
265 |
+
results[cell_type][allele] = output_tensor[:, :, i, j]
|
266 |
+
|
267 |
+
return results
|