File size: 3,434 Bytes
beddf47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b248ce5
a6d45a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beddf47
 
 
 
 
 
 
 
 
 
b248ce5
beddf47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b248ce5
 
 
beddf47
 
b248ce5
beddf47
 
 
b248ce5
beddf47
 
 
 
b248ce5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: clinc_oos
      type: clinc_oos
      args: plus
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9409677419354838
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: clinc_oos
      type: clinc_oos
      config: small
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8678181818181818
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.8709070335541537
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.8678181818181818
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.8873756372468106
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.943794701986755
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.8678181818181818
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.8678181818181818
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9010603026068839
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.8678181818181818
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.8602590146783372
      verified: true
    - name: loss
      type: loss
      value: 0.8631454110145569
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1004
- Accuracy: 0.9410

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9037        | 1.0   | 318  | 0.5745          | 0.7326   |
| 0.4486        | 2.0   | 636  | 0.2866          | 0.8819   |
| 0.2537        | 3.0   | 954  | 0.1794          | 0.9210   |
| 0.1762        | 4.0   | 1272 | 0.1387          | 0.9294   |
| 0.1419        | 5.0   | 1590 | 0.1210          | 0.9358   |
| 0.1247        | 6.0   | 1908 | 0.1119          | 0.9413   |
| 0.1138        | 7.0   | 2226 | 0.1067          | 0.9387   |
| 0.1078        | 8.0   | 2544 | 0.1026          | 0.9423   |
| 0.1043        | 9.0   | 2862 | 0.1010          | 0.9413   |
| 0.102         | 10.0  | 3180 | 0.1004          | 0.9410   |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.11.0
- Datasets 1.16.1
- Tokenizers 0.10.3