End of training
Browse files
README.md
CHANGED
@@ -67,7 +67,7 @@ wandb_entity:
|
|
67 |
gradient_accumulation_steps: 4
|
68 |
micro_batch_size: 16
|
69 |
eval_batch_size: 16
|
70 |
-
num_epochs:
|
71 |
optimizer: adamw_bnb_8bit
|
72 |
lr_scheduler: cosine
|
73 |
learning_rate: 0.0002
|
@@ -116,7 +116,7 @@ save_safetensors: true
|
|
116 |
|
117 |
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
118 |
It achieves the following results on the evaluation set:
|
119 |
-
- Loss: 0.
|
120 |
|
121 |
## Model description
|
122 |
|
@@ -144,22 +144,112 @@ The following hyperparameters were used during training:
|
|
144 |
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
|
145 |
- lr_scheduler_type: cosine
|
146 |
- lr_scheduler_warmup_steps: 20
|
147 |
-
- num_epochs:
|
148 |
|
149 |
### Training results
|
150 |
|
151 |
-
| Training Loss | Epoch
|
152 |
-
|
153 |
-
| 1.334 | 0.6667
|
154 |
-
| 1.3476 | 1.3333
|
155 |
-
| 1.
|
156 |
-
| 1.3157 | 2.6667
|
157 |
-
| 1.
|
158 |
-
| 1.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
|
165 |
### Framework versions
|
|
|
67 |
gradient_accumulation_steps: 4
|
68 |
micro_batch_size: 16
|
69 |
eval_batch_size: 16
|
70 |
+
num_epochs: 100
|
71 |
optimizer: adamw_bnb_8bit
|
72 |
lr_scheduler: cosine
|
73 |
learning_rate: 0.0002
|
|
|
116 |
|
117 |
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
118 |
It achieves the following results on the evaluation set:
|
119 |
+
- Loss: 0.3648
|
120 |
|
121 |
## Model description
|
122 |
|
|
|
144 |
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
|
145 |
- lr_scheduler_type: cosine
|
146 |
- lr_scheduler_warmup_steps: 20
|
147 |
+
- num_epochs: 100
|
148 |
|
149 |
### Training results
|
150 |
|
151 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
152 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
153 |
+
| 1.334 | 0.6667 | 1 | 1.2849 |
|
154 |
+
| 1.3476 | 1.3333 | 2 | 1.2780 |
|
155 |
+
| 1.2981 | 2.0 | 3 | 1.2487 |
|
156 |
+
| 1.3157 | 2.6667 | 4 | 1.1840 |
|
157 |
+
| 1.1757 | 3.3333 | 5 | 1.0690 |
|
158 |
+
| 1.1376 | 4.0 | 6 | 0.9086 |
|
159 |
+
| 0.9395 | 4.6667 | 7 | 0.7184 |
|
160 |
+
| 0.7385 | 5.3333 | 8 | 0.5617 |
|
161 |
+
| 0.5541 | 6.0 | 9 | 0.4307 |
|
162 |
+
| 0.4056 | 6.6667 | 10 | 0.3257 |
|
163 |
+
| 0.2791 | 7.3333 | 11 | 0.2866 |
|
164 |
+
| 0.2198 | 8.0 | 12 | 0.2453 |
|
165 |
+
| 0.1746 | 8.6667 | 13 | 0.2167 |
|
166 |
+
| 0.1582 | 9.3333 | 14 | 0.2104 |
|
167 |
+
| 0.1515 | 10.0 | 15 | 0.1699 |
|
168 |
+
| 0.1168 | 10.6667 | 16 | 0.1502 |
|
169 |
+
| 0.087 | 11.3333 | 17 | 0.1415 |
|
170 |
+
| 0.1 | 12.0 | 18 | 0.1574 |
|
171 |
+
| 0.0832 | 12.6667 | 19 | 0.1699 |
|
172 |
+
| 0.0765 | 13.3333 | 20 | 0.1601 |
|
173 |
+
| 0.0697 | 14.0 | 21 | 0.1544 |
|
174 |
+
| 0.0625 | 14.6667 | 22 | 0.1653 |
|
175 |
+
| 0.0583 | 15.3333 | 23 | 0.1628 |
|
176 |
+
| 0.047 | 16.0 | 24 | 0.1463 |
|
177 |
+
| 0.0366 | 16.6667 | 25 | 0.1637 |
|
178 |
+
| 0.0342 | 17.3333 | 26 | 0.2020 |
|
179 |
+
| 0.0398 | 18.0 | 27 | 0.1801 |
|
180 |
+
| 0.0319 | 18.6667 | 28 | 0.1835 |
|
181 |
+
| 0.0229 | 19.3333 | 29 | 0.1957 |
|
182 |
+
| 0.0286 | 20.0 | 30 | 0.2024 |
|
183 |
+
| 0.0166 | 20.6667 | 31 | 0.2519 |
|
184 |
+
| 0.0184 | 21.3333 | 32 | 0.2699 |
|
185 |
+
| 0.0129 | 22.0 | 33 | 0.2813 |
|
186 |
+
| 0.0109 | 22.6667 | 34 | 0.2950 |
|
187 |
+
| 0.0105 | 23.3333 | 35 | 0.3037 |
|
188 |
+
| 0.0111 | 24.0 | 36 | 0.3161 |
|
189 |
+
| 0.0071 | 24.6667 | 37 | 0.3310 |
|
190 |
+
| 0.0115 | 25.3333 | 38 | 0.3375 |
|
191 |
+
| 0.0051 | 26.0 | 39 | 0.3456 |
|
192 |
+
| 0.004 | 26.6667 | 40 | 0.3488 |
|
193 |
+
| 0.0077 | 27.3333 | 41 | 0.3599 |
|
194 |
+
| 0.0028 | 28.0 | 42 | 0.3706 |
|
195 |
+
| 0.0021 | 28.6667 | 43 | 0.3737 |
|
196 |
+
| 0.002 | 29.3333 | 44 | 0.3729 |
|
197 |
+
| 0.0017 | 30.0 | 45 | 0.3742 |
|
198 |
+
| 0.0013 | 30.6667 | 46 | 0.3757 |
|
199 |
+
| 0.0004 | 31.3333 | 47 | 0.3755 |
|
200 |
+
| 0.0006 | 32.0 | 48 | 0.3764 |
|
201 |
+
| 0.0002 | 32.6667 | 49 | 0.3750 |
|
202 |
+
| 0.0011 | 33.3333 | 50 | 0.3646 |
|
203 |
+
| 0.0005 | 34.0 | 51 | 0.3586 |
|
204 |
+
| 0.0013 | 34.6667 | 52 | 0.3617 |
|
205 |
+
| 0.0005 | 35.3333 | 53 | 0.3638 |
|
206 |
+
| 0.0011 | 36.0 | 54 | 0.3657 |
|
207 |
+
| 0.0003 | 36.6667 | 55 | 0.3710 |
|
208 |
+
| 0.0002 | 37.3333 | 56 | 0.3711 |
|
209 |
+
| 0.0004 | 38.0 | 57 | 0.3736 |
|
210 |
+
| 0.0003 | 38.6667 | 58 | 0.3784 |
|
211 |
+
| 0.0001 | 39.3333 | 59 | 0.3795 |
|
212 |
+
| 0.0007 | 40.0 | 60 | 0.3737 |
|
213 |
+
| 0.0001 | 40.6667 | 61 | 0.3730 |
|
214 |
+
| 0.0003 | 41.3333 | 62 | 0.3729 |
|
215 |
+
| 0.0002 | 42.0 | 63 | 0.3714 |
|
216 |
+
| 0.0001 | 42.6667 | 64 | 0.3698 |
|
217 |
+
| 0.0001 | 43.3333 | 65 | 0.3704 |
|
218 |
+
| 0.0001 | 44.0 | 66 | 0.3704 |
|
219 |
+
| 0.0001 | 44.6667 | 67 | 0.3705 |
|
220 |
+
| 0.0001 | 45.3333 | 68 | 0.3655 |
|
221 |
+
| 0.0002 | 46.0 | 69 | 0.3672 |
|
222 |
+
| 0.0002 | 46.6667 | 70 | 0.3682 |
|
223 |
+
| 0.0002 | 47.3333 | 71 | 0.3656 |
|
224 |
+
| 0.0001 | 48.0 | 72 | 0.3663 |
|
225 |
+
| 0.0001 | 48.6667 | 73 | 0.3668 |
|
226 |
+
| 0.0001 | 49.3333 | 74 | 0.3673 |
|
227 |
+
| 0.0001 | 50.0 | 75 | 0.3638 |
|
228 |
+
| 0.0001 | 50.6667 | 76 | 0.3640 |
|
229 |
+
| 0.0001 | 51.3333 | 77 | 0.3643 |
|
230 |
+
| 0.0001 | 52.0 | 78 | 0.3640 |
|
231 |
+
| 0.0001 | 52.6667 | 79 | 0.3648 |
|
232 |
+
| 0.0001 | 53.3333 | 80 | 0.3629 |
|
233 |
+
| 0.0001 | 54.0 | 81 | 0.3648 |
|
234 |
+
| 0.0001 | 54.6667 | 82 | 0.3617 |
|
235 |
+
| 0.0001 | 55.3333 | 83 | 0.3632 |
|
236 |
+
| 0.0001 | 56.0 | 84 | 0.3650 |
|
237 |
+
| 0.0001 | 56.6667 | 85 | 0.3636 |
|
238 |
+
| 0.0001 | 57.3333 | 86 | 0.3633 |
|
239 |
+
| 0.0001 | 58.0 | 87 | 0.3673 |
|
240 |
+
| 0.0001 | 58.6667 | 88 | 0.3663 |
|
241 |
+
| 0.0001 | 59.3333 | 89 | 0.3618 |
|
242 |
+
| 0.0001 | 60.0 | 90 | 0.3635 |
|
243 |
+
| 0.0001 | 60.6667 | 91 | 0.3605 |
|
244 |
+
| 0.0001 | 61.3333 | 92 | 0.3654 |
|
245 |
+
| 0.0001 | 62.0 | 93 | 0.3647 |
|
246 |
+
| 0.0001 | 62.6667 | 94 | 0.3586 |
|
247 |
+
| 0.0001 | 63.3333 | 95 | 0.3601 |
|
248 |
+
| 0.0001 | 64.0 | 96 | 0.3631 |
|
249 |
+
| 0.0001 | 64.6667 | 97 | 0.3629 |
|
250 |
+
| 0.0001 | 65.3333 | 98 | 0.3652 |
|
251 |
+
| 0.0001 | 66.0 | 99 | 0.3645 |
|
252 |
+
| 0.0001 | 66.6667 | 100 | 0.3648 |
|
253 |
|
254 |
|
255 |
### Framework versions
|