--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: hc-mistral-alpaca results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: sample_data/alpaca_synth_queries.jsonl type: sharegpt conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-alpaca-out hub_model_id: caldana/hc-mistral-alpaca adapter: qlora lora_model_dir: sequence_len: 896 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: gradient_accumulation_steps: 4 micro_batch_size: 16 eval_batch_size: 16 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 max_grad_norm: 1.0 adam_beta2: 0.95 adam_epsilon: 0.00001 save_total_limit: 12 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 20 evals_per_epoch: 3 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 6 debug: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" save_safetensors: true ```

# hc-mistral-alpaca This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 49 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.334 | 0.6667 | 1 | 1.2849 | | 1.3476 | 1.3333 | 2 | 1.2762 | | 1.2977 | 2.0 | 3 | 1.2492 | | 1.3157 | 2.6667 | 4 | 1.1859 | | 1.1755 | 3.3333 | 5 | 1.0709 | | 1.1377 | 4.0 | 6 | 0.9092 | | 0.9404 | 4.6667 | 7 | 0.7201 | | 0.7404 | 5.3333 | 8 | 0.5605 | | 0.5547 | 6.0 | 9 | 0.4305 | | 0.4057 | 6.6667 | 10 | 0.3253 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1