callmesan commited on
Commit
26579ff
1 Parent(s): e03a29a

End of training

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: ai4bharat/indic-bert
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: indic-bert-hinglish-binary
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # indic-bert-hinglish-binary
21
+
22
+ This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.7521
25
+ - Accuracy: 0.6681
26
+ - Precision: 0.6338
27
+ - Recall: 0.6182
28
+ - F1: 0.6213
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 128
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 128
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 0.6539 | 0.9709 | 25 | 0.6510 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
62
+ | 0.6235 | 1.9806 | 51 | 0.6296 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
63
+ | 0.63 | 2.9903 | 77 | 0.6362 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
64
+ | 0.6149 | 4.0 | 103 | 0.6486 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
65
+ | 0.6088 | 4.9709 | 128 | 0.6229 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
66
+ | 0.5572 | 5.9806 | 154 | 0.6243 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
67
+ | 0.4985 | 6.9903 | 180 | 0.6328 | 0.6322 | 0.3178 | 0.4957 | 0.3873 |
68
+ | 0.4697 | 8.0 | 206 | 0.6893 | 0.6730 | 0.6504 | 0.5829 | 0.5710 |
69
+ | 0.4114 | 8.9709 | 231 | 0.6825 | 0.6839 | 0.6531 | 0.6288 | 0.6327 |
70
+ | 0.3981 | 9.7087 | 250 | 0.6905 | 0.6866 | 0.6582 | 0.6228 | 0.6258 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.45.1
76
+ - Pytorch 2.4.0
77
+ - Datasets 3.0.1
78
+ - Tokenizers 0.20.0