File size: 2,538 Bytes
f899bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: cc-by-4.0
base_model: l3cube-pune/indic-sentence-bert-nli
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: indic-sentence-bert-nli-abusive-comments-ta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indic-sentence-bert-nli-abusive-comments-ta

This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3335
- Accuracy: 0.6148
- Precision: 0.0769
- Recall: 0.125
- F1: 0.0952

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.3249        | 1.0   | 186  | 1.3335          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.3468        | 2.0   | 372  | 1.3318          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.3534        | 3.0   | 558  | 1.3310          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.1991        | 4.0   | 744  | 1.3412          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.3534        | 5.0   | 930  | 1.3315          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.4725        | 6.0   | 1116 | 1.3313          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.3451        | 7.0   | 1302 | 1.3314          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.315         | 8.0   | 1488 | 1.3315          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.3157        | 9.0   | 1674 | 1.3324          | 0.6176   | 0.0772    | 0.125  | 0.0955 |
| 1.2015        | 10.0  | 1860 | 1.3319          | 0.6176   | 0.0772    | 0.125  | 0.0955 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0