End of training
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-4.0
|
4 |
+
base_model: l3cube-pune/indic-sentence-bert-nli
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: indic-sentence-bert-nli-hinglish-binary
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# indic-sentence-bert-nli-hinglish-binary
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.6151
|
25 |
+
- Accuracy: 0.6921
|
26 |
+
- Precision: 0.6876
|
27 |
+
- Recall: 0.6039
|
28 |
+
- F1: 0.5965
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 5e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 128
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 128
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 5
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
60 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
61 |
+
| 0.664 | 0.9709 | 25 | 0.6561 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
|
62 |
+
| 0.6424 | 1.9806 | 51 | 0.6544 | 0.6376 | 0.3188 | 0.5 | 0.3894 |
|
63 |
+
| 0.6373 | 2.9903 | 77 | 0.6223 | 0.7139 | 0.7186 | 0.6328 | 0.6334 |
|
64 |
+
| 0.622 | 4.0 | 103 | 0.6048 | 0.7139 | 0.7158 | 0.6345 | 0.6357 |
|
65 |
+
| 0.594 | 4.8544 | 125 | 0.6002 | 0.7166 | 0.7220 | 0.6366 | 0.6380 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.45.1
|
71 |
+
- Pytorch 2.4.0
|
72 |
+
- Datasets 3.0.1
|
73 |
+
- Tokenizers 0.20.0
|