--- library_name: transformers license: cc-by-4.0 base_model: l3cube-pune/indic-sentence-bert-nli tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-sentence-bert-nli-hinglish-binary results: [] --- # indic-sentence-bert-nli-hinglish-binary This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6151 - Accuracy: 0.6921 - Precision: 0.6876 - Recall: 0.6039 - F1: 0.5965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.664 | 0.9709 | 25 | 0.6561 | 0.6376 | 0.3188 | 0.5 | 0.3894 | | 0.6424 | 1.9806 | 51 | 0.6544 | 0.6376 | 0.3188 | 0.5 | 0.3894 | | 0.6373 | 2.9903 | 77 | 0.6223 | 0.7139 | 0.7186 | 0.6328 | 0.6334 | | 0.622 | 4.0 | 103 | 0.6048 | 0.7139 | 0.7158 | 0.6345 | 0.6357 | | 0.594 | 4.8544 | 125 | 0.6002 | 0.7166 | 0.7220 | 0.6366 | 0.6380 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0