--- library_name: transformers license: cc-by-4.0 base_model: l3cube-pune/indic-sentence-bert-nli tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-sentence-bert-nli-hinglish-binary results: [] --- # indic-sentence-bert-nli-hinglish-binary This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5934 - Accuracy: 0.6987 - Precision: 0.6929 - Recall: 0.6155 - F1: 0.6125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.663 | 0.9709 | 25 | 0.6551 | 0.6376 | 0.3188 | 0.5 | 0.3894 | | 0.6284 | 1.9806 | 51 | 0.6314 | 0.6676 | 0.7906 | 0.5430 | 0.4785 | | 0.6266 | 2.9903 | 77 | 0.6725 | 0.5095 | 0.6373 | 0.5975 | 0.4974 | | 0.6261 | 4.0 | 103 | 0.6008 | 0.7112 | 0.7124 | 0.6307 | 0.6311 | | 0.6202 | 4.9709 | 128 | 0.6025 | 0.7057 | 0.7005 | 0.6264 | 0.6265 | | 0.5987 | 5.9806 | 154 | 0.5907 | 0.7112 | 0.7216 | 0.6258 | 0.6236 | | 0.5856 | 6.9903 | 180 | 0.5818 | 0.7193 | 0.7253 | 0.6404 | 0.6427 | | 0.5753 | 8.0 | 206 | 0.5804 | 0.7166 | 0.7502 | 0.6252 | 0.6201 | | 0.5416 | 8.9709 | 231 | 0.5667 | 0.7221 | 0.7424 | 0.6376 | 0.6378 | | 0.5419 | 9.7087 | 250 | 0.5599 | 0.7330 | 0.7439 | 0.6575 | 0.6632 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0