End of training
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vakyansh-wav2vec2-punjabi-pam-10-audio-abuse-feature
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vakyansh-wav2vec2-punjabi-pam-10-audio-abuse-feature
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7070
|
21 |
+
- Accuracy: 0.7112
|
22 |
+
- Macro F1-score: 0.7112
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 64
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 50
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
|
56 |
+
| 6.7326 | 0.77 | 10 | 6.7224 | 0.0 | 0.0 |
|
57 |
+
| 6.682 | 1.54 | 20 | 6.5714 | 0.2888 | 0.0298 |
|
58 |
+
| 6.523 | 2.31 | 30 | 6.3268 | 0.4877 | 0.3619 |
|
59 |
+
| 6.247 | 3.08 | 40 | 6.0039 | 0.4768 | 0.3229 |
|
60 |
+
| 6.0644 | 3.85 | 50 | 5.7134 | 0.4796 | 0.3241 |
|
61 |
+
| 5.7866 | 4.62 | 60 | 5.4332 | 0.4796 | 0.3241 |
|
62 |
+
| 5.5229 | 5.38 | 70 | 5.2026 | 0.4796 | 0.3241 |
|
63 |
+
| 5.2712 | 6.15 | 80 | 4.9856 | 0.4796 | 0.3241 |
|
64 |
+
| 5.1268 | 6.92 | 90 | 4.7918 | 0.4796 | 0.3241 |
|
65 |
+
| 4.9768 | 7.69 | 100 | 4.5999 | 0.4796 | 0.3241 |
|
66 |
+
| 4.7137 | 8.46 | 110 | 4.3958 | 0.4796 | 0.3241 |
|
67 |
+
| 4.5863 | 9.23 | 120 | 4.1988 | 0.4796 | 0.3241 |
|
68 |
+
| 4.3386 | 10.0 | 130 | 3.9983 | 0.4796 | 0.3241 |
|
69 |
+
| 4.1936 | 10.77 | 140 | 3.7938 | 0.4796 | 0.3241 |
|
70 |
+
| 3.9752 | 11.54 | 150 | 3.5906 | 0.4796 | 0.3241 |
|
71 |
+
| 3.9035 | 12.31 | 160 | 3.3854 | 0.4796 | 0.3241 |
|
72 |
+
| 3.652 | 13.08 | 170 | 3.1907 | 0.4796 | 0.3241 |
|
73 |
+
| 3.3045 | 13.85 | 180 | 2.9781 | 0.4796 | 0.3241 |
|
74 |
+
| 3.135 | 14.62 | 190 | 2.7764 | 0.4796 | 0.3241 |
|
75 |
+
| 2.9589 | 15.38 | 200 | 2.5827 | 0.4796 | 0.3241 |
|
76 |
+
| 2.7405 | 16.15 | 210 | 2.3901 | 0.4796 | 0.3241 |
|
77 |
+
| 2.5482 | 16.92 | 220 | 2.2042 | 0.4796 | 0.3241 |
|
78 |
+
| 2.4126 | 17.69 | 230 | 2.0318 | 0.4796 | 0.3241 |
|
79 |
+
| 2.2721 | 18.46 | 240 | 1.8672 | 0.4796 | 0.3241 |
|
80 |
+
| 2.0507 | 19.23 | 250 | 1.7156 | 0.4796 | 0.3241 |
|
81 |
+
| 1.8895 | 20.0 | 260 | 1.5721 | 0.4796 | 0.3241 |
|
82 |
+
| 1.7304 | 20.77 | 270 | 1.4453 | 0.4796 | 0.3241 |
|
83 |
+
| 1.5756 | 21.54 | 280 | 1.3330 | 0.4796 | 0.3241 |
|
84 |
+
| 1.4961 | 22.31 | 290 | 1.2238 | 0.6594 | 0.6321 |
|
85 |
+
| 1.4065 | 23.08 | 300 | 1.1468 | 0.6621 | 0.6356 |
|
86 |
+
| 1.4168 | 23.85 | 310 | 1.0636 | 0.6839 | 0.6632 |
|
87 |
+
| 1.1788 | 24.62 | 320 | 0.9818 | 0.7411 | 0.7325 |
|
88 |
+
| 1.06 | 25.38 | 330 | 0.9203 | 0.7466 | 0.7438 |
|
89 |
+
| 1.0021 | 26.15 | 340 | 0.8806 | 0.7629 | 0.7629 |
|
90 |
+
| 1.0249 | 26.92 | 350 | 0.8698 | 0.6894 | 0.6690 |
|
91 |
+
| 0.8521 | 27.69 | 360 | 0.7970 | 0.7602 | 0.7562 |
|
92 |
+
| 0.8504 | 28.46 | 370 | 0.7724 | 0.7602 | 0.7602 |
|
93 |
+
| 0.7939 | 29.23 | 380 | 0.7440 | 0.7466 | 0.7461 |
|
94 |
+
| 0.7805 | 30.0 | 390 | 0.7283 | 0.7520 | 0.7511 |
|
95 |
+
| 0.6974 | 30.77 | 400 | 0.7311 | 0.7384 | 0.7377 |
|
96 |
+
| 0.7533 | 31.54 | 410 | 0.7270 | 0.7112 | 0.6979 |
|
97 |
+
| 0.7528 | 32.31 | 420 | 0.6796 | 0.7357 | 0.7298 |
|
98 |
+
| 0.6679 | 33.08 | 430 | 0.6834 | 0.7357 | 0.7357 |
|
99 |
+
| 0.6732 | 33.85 | 440 | 0.6851 | 0.7248 | 0.7248 |
|
100 |
+
| 0.6001 | 34.62 | 450 | 0.6585 | 0.7548 | 0.7530 |
|
101 |
+
| 0.6731 | 35.38 | 460 | 0.6727 | 0.7411 | 0.7380 |
|
102 |
+
| 0.5601 | 36.15 | 470 | 0.6688 | 0.7330 | 0.7321 |
|
103 |
+
| 0.5488 | 36.92 | 480 | 0.6879 | 0.7439 | 0.7420 |
|
104 |
+
| 0.5892 | 37.69 | 490 | 0.6809 | 0.7166 | 0.7148 |
|
105 |
+
| 0.5651 | 38.46 | 500 | 0.6877 | 0.7193 | 0.7181 |
|
106 |
+
| 0.5595 | 39.23 | 510 | 0.6874 | 0.7221 | 0.7218 |
|
107 |
+
| 0.4983 | 40.0 | 520 | 0.6789 | 0.7166 | 0.7166 |
|
108 |
+
| 0.4869 | 40.77 | 530 | 0.6912 | 0.7221 | 0.7221 |
|
109 |
+
| 0.5352 | 41.54 | 540 | 0.7038 | 0.7003 | 0.6984 |
|
110 |
+
| 0.444 | 42.31 | 550 | 0.6778 | 0.7330 | 0.7321 |
|
111 |
+
| 0.5637 | 43.08 | 560 | 0.6873 | 0.6975 | 0.6973 |
|
112 |
+
| 0.5065 | 43.85 | 570 | 0.6736 | 0.7411 | 0.7405 |
|
113 |
+
| 0.4921 | 44.62 | 580 | 0.6859 | 0.7384 | 0.7381 |
|
114 |
+
| 0.4426 | 45.38 | 590 | 0.6995 | 0.7221 | 0.7221 |
|
115 |
+
| 0.4679 | 46.15 | 600 | 0.6967 | 0.7275 | 0.7271 |
|
116 |
+
| 0.6099 | 46.92 | 610 | 0.7145 | 0.6948 | 0.6947 |
|
117 |
+
| 0.4779 | 47.69 | 620 | 0.7026 | 0.7139 | 0.7139 |
|
118 |
+
| 0.4743 | 48.46 | 630 | 0.7036 | 0.7139 | 0.7137 |
|
119 |
+
| 0.4687 | 49.23 | 640 | 0.7060 | 0.7112 | 0.7112 |
|
120 |
+
| 0.459 | 50.0 | 650 | 0.7070 | 0.7112 | 0.7112 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.33.0
|
126 |
+
- Pytorch 2.0.0
|
127 |
+
- Datasets 2.1.0
|
128 |
+
- Tokenizers 0.13.3
|