adds: initial commit with optimum exported clip-vit-b-32-multilingual-v1
Browse files- README.md +124 -0
- config.json +24 -0
- model.onnx +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,127 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
language: multilingual
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
license: apache-2.0
|
10 |
---
|
11 |
+
|
12 |
+
# sentence-transformers/clip-ViT-B-32-multilingual-v1-onnx
|
13 |
+
|
14 |
+
This is a multi-lingual version of the OpenAI CLIP-ViT-B32 model converted to ONNX. You can map text (in 50+ languages) and images to a common dense vector space such that images and the matching texts are close. This model can be used for **image search** (users search through a large collection of images) and for **multi-lingual zero-shot image classification** (image labels are defined as text).
|
15 |
+
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer, util
|
29 |
+
from PIL import Image, ImageFile
|
30 |
+
import requests
|
31 |
+
import torch
|
32 |
+
|
33 |
+
# We use the original clip-ViT-B-32 for encoding images
|
34 |
+
img_model = SentenceTransformer('clip-ViT-B-32')
|
35 |
+
|
36 |
+
# Our text embedding model is aligned to the img_model and maps 50+
|
37 |
+
# languages to the same vector space
|
38 |
+
text_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1')
|
39 |
+
|
40 |
+
|
41 |
+
# Now we load and encode the images
|
42 |
+
def load_image(url_or_path):
|
43 |
+
if url_or_path.startswith("http://") or url_or_path.startswith("https://"):
|
44 |
+
return Image.open(requests.get(url_or_path, stream=True).raw)
|
45 |
+
else:
|
46 |
+
return Image.open(url_or_path)
|
47 |
+
|
48 |
+
# We load 3 images. You can either pass URLs or
|
49 |
+
# a path on your disc
|
50 |
+
img_paths = [
|
51 |
+
# Dog image
|
52 |
+
"https://unsplash.com/photos/QtxgNsmJQSs/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjM1ODQ0MjY3&w=640",
|
53 |
+
|
54 |
+
# Cat image
|
55 |
+
"https://unsplash.com/photos/9UUoGaaHtNE/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8Mnx8Y2F0fHwwfHx8fDE2MzU4NDI1ODQ&w=640",
|
56 |
+
|
57 |
+
# Beach image
|
58 |
+
"https://unsplash.com/photos/Siuwr3uCir0/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8NHx8YmVhY2h8fDB8fHx8MTYzNTg0MjYzMg&w=640"
|
59 |
+
]
|
60 |
+
|
61 |
+
images = [load_image(img) for img in img_paths]
|
62 |
+
|
63 |
+
# Map images to the vector space
|
64 |
+
img_embeddings = img_model.encode(images)
|
65 |
+
|
66 |
+
# Now we encode our text:
|
67 |
+
texts = [
|
68 |
+
"A dog in the snow",
|
69 |
+
"Eine Katze", # German: A cat
|
70 |
+
"Una playa con palmeras." # Spanish: a beach with palm trees
|
71 |
+
]
|
72 |
+
|
73 |
+
text_embeddings = text_model.encode(texts)
|
74 |
+
|
75 |
+
# Compute cosine similarities:
|
76 |
+
cos_sim = util.cos_sim(text_embeddings, img_embeddings)
|
77 |
+
|
78 |
+
for text, scores in zip(texts, cos_sim):
|
79 |
+
max_img_idx = torch.argmax(scores)
|
80 |
+
print("Text:", text)
|
81 |
+
print("Score:", scores[max_img_idx] )
|
82 |
+
print("Path:", img_paths[max_img_idx], "\n")
|
83 |
+
|
84 |
+
```
|
85 |
+
|
86 |
+
## Multilingual Image Search - Demo
|
87 |
+
For a demo of multilingual image search, have a look at: [Image_Search-multilingual.ipynb](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/image-search/Image_Search-multilingual.ipynb) ( [Colab version](https://colab.research.google.com/drive/1N6woBKL4dzYsHboDNqtv-8gjZglKOZcn?usp=sharing) )
|
88 |
+
|
89 |
+
For more details on image search and zero-shot image classification, have a look at the documentation on [SBERT.net](https://www.sbert.net/examples/applications/image-search/README.html).
|
90 |
+
|
91 |
+
|
92 |
+
## Training
|
93 |
+
This model has been created using [Multilingual Knowledge Distillation](https://arxiv.org/abs/2004.09813). As teacher model, we used the original `clip-ViT-B-32` and then trained a [multilingual DistilBERT](https://huggingface.co/distilbert-base-multilingual-cased) model as student model. Using parallel data, the multilingual student model learns to align the teachers vector space across many languages. As a result, you get an text embedding model that works for 50+ languages.
|
94 |
+
|
95 |
+
The image encoder from CLIP is unchanged, i.e. you can use the original CLIP image encoder to encode images.
|
96 |
+
|
97 |
+
Have a look at the [SBERT.net - Multilingual-Models documentation](https://www.sbert.net/examples/training/multilingual/README.html) on more details and for **training code**.
|
98 |
+
|
99 |
+
We used the following 50+ languages to align the vector spaces: ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh-cn, zh-tw.
|
100 |
+
|
101 |
+
The original multilingual DistilBERT supports 100+ lanugages. The model also work for these languages, but might not yield the best results.
|
102 |
+
|
103 |
+
## Full Model Architecture
|
104 |
+
```
|
105 |
+
SentenceTransformer(
|
106 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
107 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
108 |
+
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
109 |
+
)
|
110 |
+
```
|
111 |
+
|
112 |
+
## Citing & Authors
|
113 |
+
|
114 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
115 |
+
|
116 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
117 |
+
```bibtex
|
118 |
+
@inproceedings{reimers-2019-sentence-bert,
|
119 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
120 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
121 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
122 |
+
month = "11",
|
123 |
+
year = "2019",
|
124 |
+
publisher = "Association for Computational Linguistics",
|
125 |
+
url = "http://arxiv.org/abs/1908.10084",
|
126 |
+
}
|
127 |
+
```
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/canavar/.cache/torch/sentence_transformers/sentence-transformers_clip-ViT-B-32-multilingual-v1/",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_past": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"qa_dropout": 0.1,
|
19 |
+
"seq_classif_dropout": 0.2,
|
20 |
+
"sinusoidal_pos_embds": false,
|
21 |
+
"tie_weights_": true,
|
22 |
+
"transformers_version": "4.36.0",
|
23 |
+
"vocab_size": 119547
|
24 |
+
}
|
model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f3129e76a60a33aa42941a369d54266151f9ca2e7e4d52295300edb85c5bbeb
|
3 |
+
size 540650752
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "DistilBertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|