cankaracelebi
commited on
Commit
•
0686659
1
Parent(s):
9a41260
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- mozilla-foundation/common_voice_17_0
|
9 |
+
metrics:
|
10 |
+
- wer
|
11 |
+
model-index:
|
12 |
+
- name: Whisper Medium Tr - Can K V2
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: Common Voice 17.0
|
19 |
+
type: mozilla-foundation/common_voice_17_0
|
20 |
+
config: tr
|
21 |
+
split: test
|
22 |
+
args: 'config: tr, split: test'
|
23 |
+
metrics:
|
24 |
+
- name: Wer
|
25 |
+
type: wer
|
26 |
+
value: 67.02546197734821
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# Whisper Medium Tr - Can K V2
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.1892
|
37 |
+
- Wer: 67.0255
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-05
|
57 |
+
- train_batch_size: 4
|
58 |
+
- eval_batch_size: 4
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 16
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 500
|
65 |
+
- training_steps: 8000
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
72 |
+
| 0.146 | 0.34 | 1000 | 0.2164 | 105.0754 |
|
73 |
+
| 0.1562 | 0.69 | 2000 | 0.2115 | 43.5238 |
|
74 |
+
| 0.0803 | 1.03 | 3000 | 0.1979 | 42.8919 |
|
75 |
+
| 0.0668 | 1.38 | 4000 | 0.1944 | 37.3397 |
|
76 |
+
| 0.0693 | 1.72 | 5000 | 0.1869 | 36.3910 |
|
77 |
+
| 0.0305 | 2.07 | 6000 | 0.1898 | 49.8254 |
|
78 |
+
| 0.0272 | 2.41 | 7000 | 0.1908 | 60.8005 |
|
79 |
+
| 0.0274 | 2.76 | 8000 | 0.1892 | 67.0255 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.28.1
|
85 |
+
- Pytorch 2.4.0+cu121
|
86 |
+
- Datasets 2.20.0
|
87 |
+
- Tokenizers 0.13.3
|