cankaracelebi commited on
Commit
0686659
1 Parent(s): 9a41260

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - mozilla-foundation/common_voice_17_0
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: Whisper Medium Tr - Can K V2
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Common Voice 17.0
19
+ type: mozilla-foundation/common_voice_17_0
20
+ config: tr
21
+ split: test
22
+ args: 'config: tr, split: test'
23
+ metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 67.02546197734821
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # Whisper Medium Tr - Can K V2
33
+
34
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1892
37
+ - Wer: 67.0255
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 1e-05
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 16
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 500
65
+ - training_steps: 8000
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
72
+ | 0.146 | 0.34 | 1000 | 0.2164 | 105.0754 |
73
+ | 0.1562 | 0.69 | 2000 | 0.2115 | 43.5238 |
74
+ | 0.0803 | 1.03 | 3000 | 0.1979 | 42.8919 |
75
+ | 0.0668 | 1.38 | 4000 | 0.1944 | 37.3397 |
76
+ | 0.0693 | 1.72 | 5000 | 0.1869 | 36.3910 |
77
+ | 0.0305 | 2.07 | 6000 | 0.1898 | 49.8254 |
78
+ | 0.0272 | 2.41 | 7000 | 0.1908 | 60.8005 |
79
+ | 0.0274 | 2.76 | 8000 | 0.1892 | 67.0255 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.28.1
85
+ - Pytorch 2.4.0+cu121
86
+ - Datasets 2.20.0
87
+ - Tokenizers 0.13.3