--- language: - tr license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium Tr - Can K V2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: tr split: test args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 67.02546197734821 --- # Whisper Medium Tr - Can K V2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1892 - Wer: 67.0255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.146 | 0.34 | 1000 | 0.2164 | 105.0754 | | 0.1562 | 0.69 | 2000 | 0.2115 | 43.5238 | | 0.0803 | 1.03 | 3000 | 0.1979 | 42.8919 | | 0.0668 | 1.38 | 4000 | 0.1944 | 37.3397 | | 0.0693 | 1.72 | 5000 | 0.1869 | 36.3910 | | 0.0305 | 2.07 | 6000 | 0.1898 | 49.8254 | | 0.0272 | 2.41 | 7000 | 0.1908 | 60.8005 | | 0.0274 | 2.76 | 8000 | 0.1892 | 67.0255 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.13.3