File size: 2,395 Bytes
2a6a48c
6d7668b
 
2a6a48c
 
 
6d7668b
2a6a48c
 
6d7668b
2a6a48c
 
 
 
 
 
6d7668b
2a6a48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
language:
- he
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: he-cantillation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# he-cantillation

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1666
- eval_wer: 10.9128
- eval_avg_precision_Exact: 0.9184
- eval_avg_recall_Exact: 0.9197
- eval_avg_f1_Exact: 0.9188
- eval_avg_precision_Letter_Shift: 0.9365
- eval_avg_recall_Letter_Shift: 0.9379
- eval_avg_f1_Letter_Shift: 0.9369
- eval_avg_precision_Word_Level: 0.9382
- eval_avg_recall_Word_Level: 0.9395
- eval_avg_f1_Word_Level: 0.9385
- eval_avg_precision_Word_Shift: 0.9779
- eval_avg_recall_Word_Shift: 0.9797
- eval_avg_f1_Word_Shift: 0.9784
- eval_precision_median_exact: 1.0
- eval_recall_median_exact: 1.0
- eval_f1_median_exact: 1.0
- eval_precision_max_exact: 1.0
- eval_recall_max_exact: 1.0
- eval_f1_max_exact: 1.0
- eval_precision_min_Exact: 0.0
- eval_recall_min_Exact: 0.0
- eval_f1_min_Exact: 0.0
- eval_precision_min_Letter_Shift: 0.0
- eval_recall_min_Letter_Shift: 0.0
- eval_f1_min_Letter_Shift: 0.0
- eval_precision_min_Word_Level: 0.0
- eval_recall_min_Word_Level: 0.0
- eval_f1_min_Word_Level: 0.0
- eval_precision_min_Word_Shift: 0.1429
- eval_recall_min_Word_Shift: 0.1111
- eval_f1_min_Word_Shift: 0.125
- eval_runtime: 1554.5785
- eval_samples_per_second: 1.732
- eval_steps_per_second: 0.055
- epoch: 4.0
- step: 50000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 50000
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0