--- language: - he base_model: cantillation/Teamim-large-v2_WeightDecay-0.05_Augmented_Combined-Data_date-09-07-2024_16-25 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: he-cantillation results: [] --- # he-cantillation This model is a fine-tuned version of [cantillation/Teamim-large-v2_WeightDecay-0.05_Augmented_Combined-Data_date-09-07-2024_16-25](https://huggingface.co/cantillation/Teamim-large-v2_WeightDecay-0.05_Augmented_Combined-Data_date-09-07-2024_16-25) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6664 - Wer: 34.2105 - Avg Precision Exact: 0.3970 - Avg Recall Exact: 0.4021 - Avg F1 Exact: 0.3994 - Avg Precision Letter Shift: 0.3970 - Avg Recall Letter Shift: 0.4021 - Avg F1 Letter Shift: 0.3994 - Avg Precision Word Level: 0.3905 - Avg Recall Word Level: 0.3956 - Avg F1 Word Level: 0.3929 - Avg Precision Word Shift: 0.5197 - Avg Recall Word Shift: 0.5402 - Avg F1 Word Shift: 0.5292 - Precision Median Exact: 0.3970 - Recall Median Exact: 0.4021 - F1 Median Exact: 0.3994 - Precision Max Exact: 0.7273 - Recall Max Exact: 0.7273 - F1 Max Exact: 0.7273 - Precision Min Exact: 0.0667 - Recall Min Exact: 0.0769 - F1 Min Exact: 0.0714 - Precision Min Letter Shift: 0.0667 - Recall Min Letter Shift: 0.0769 - F1 Min Letter Shift: 0.0714 - Precision Min Word Level: 0.0667 - Recall Min Word Level: 0.0769 - F1 Min Word Level: 0.0714 - Precision Min Word Shift: 0.2667 - Recall Min Word Shift: 0.3077 - F1 Min Word Shift: 0.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:| | No log | 1.0 | 2 | 1.0938 | 76.3158 | 0.25 | 0.2619 | 0.2558 | 0.25 | 0.2619 | 0.2558 | 0.2619 | 0.2619 | 0.2619 | 0.2727 | 0.2857 | 0.2791 | 0.25 | 0.2619 | 0.2558 | 0.5 | 0.5238 | 0.5116 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 4 | 0.7695 | 52.6316 | 0.25 | 0.2391 | 0.2444 | 0.25 | 0.2391 | 0.2444 | 0.2619 | 0.25 | 0.2558 | 0.3409 | 0.3261 | 0.3333 | 0.25 | 0.2391 | 0.2444 | 0.5 | 0.4783 | 0.4889 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 6 | 0.6176 | 52.6316 | 0.2955 | 0.2826 | 0.2889 | 0.2955 | 0.2826 | 0.2889 | 0.2857 | 0.2727 | 0.2791 | 0.3515 | 0.3401 | 0.3456 | 0.2955 | 0.2826 | 0.2889 | 0.5909 | 0.5652 | 0.5778 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0667 | 0.0714 | 0.0690 | | No log | 4.0 | 8 | 0.6977 | 50.0 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.2381 | 0.2381 | 0.2381 | 0.3352 | 0.3497 | 0.3417 | 0.25 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.125 | 0.1538 | 0.1379 | | No log | 5.0 | 10 | 0.6345 | 50.0 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.2381 | 0.2381 | 0.2381 | 0.3352 | 0.3497 | 0.3417 | 0.25 | 0.25 | 0.25 | 0.5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.125 | 0.1538 | 0.1379 | | No log | 6.0 | 12 | 0.6303 | 47.3684 | 0.2727 | 0.2857 | 0.2791 | 0.2727 | 0.2857 | 0.2791 | 0.2619 | 0.275 | 0.2683 | 0.3580 | 0.3864 | 0.3713 | 0.2727 | 0.2857 | 0.2791 | 0.5455 | 0.5714 | 0.5581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.125 | 0.1538 | 0.1379 | | No log | 7.0 | 14 | 0.6193 | 44.7368 | 0.2955 | 0.3095 | 0.3023 | 0.2955 | 0.3095 | 0.3023 | 0.2857 | 0.3 | 0.2927 | 0.4119 | 0.4487 | 0.4290 | 0.2955 | 0.3095 | 0.3023 | 0.5909 | 0.6190 | 0.6047 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1875 | 0.2308 | 0.2069 | | No log | 8.0 | 16 | 0.6194 | 42.1053 | 0.3182 | 0.3182 | 0.3182 | 0.3182 | 0.3182 | 0.3182 | 0.3095 | 0.3095 | 0.3095 | 0.4347 | 0.4563 | 0.4444 | 0.3182 | 0.3182 | 0.3182 | 0.6364 | 0.6364 | 0.6364 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1875 | 0.2308 | 0.2069 | | No log | 9.0 | 18 | 0.6302 | 39.4737 | 0.3409 | 0.3409 | 0.3409 | 0.3409 | 0.3409 | 0.3409 | 0.3333 | 0.3333 | 0.3333 | 0.4574 | 0.4790 | 0.4671 | 0.3409 | 0.3409 | 0.3409 | 0.6818 | 0.6818 | 0.6818 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1875 | 0.2308 | 0.2069 | | No log | 10.0 | 20 | 0.6424 | 39.4737 | 0.3409 | 0.3409 | 0.3409 | 0.3409 | 0.3409 | 0.3409 | 0.3333 | 0.3333 | 0.3333 | 0.4574 | 0.4790 | 0.4671 | 0.3409 | 0.3409 | 0.3409 | 0.6818 | 0.6818 | 0.6818 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1875 | 0.2308 | 0.2069 | | No log | 11.0 | 22 | 0.6514 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | No log | 12.0 | 24 | 0.6571 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 13.0 | 26 | 0.6607 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 14.0 | 28 | 0.6629 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 15.0 | 30 | 0.6644 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 16.0 | 32 | 0.6652 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 17.0 | 34 | 0.6662 | 36.8421 | 0.3742 | 0.3794 | 0.3766 | 0.3742 | 0.3794 | 0.3766 | 0.3667 | 0.3718 | 0.3690 | 0.4970 | 0.5175 | 0.5065 | 0.3742 | 0.3794 | 0.3766 | 0.6818 | 0.6818 | 0.6818 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 18.0 | 36 | 0.6663 | 34.2105 | 0.3970 | 0.4021 | 0.3994 | 0.3970 | 0.4021 | 0.3994 | 0.3905 | 0.3956 | 0.3929 | 0.5197 | 0.5402 | 0.5292 | 0.3970 | 0.4021 | 0.3994 | 0.7273 | 0.7273 | 0.7273 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 19.0 | 38 | 0.6665 | 34.2105 | 0.3970 | 0.4021 | 0.3994 | 0.3970 | 0.4021 | 0.3994 | 0.3905 | 0.3956 | 0.3929 | 0.5197 | 0.5402 | 0.5292 | 0.3970 | 0.4021 | 0.3994 | 0.7273 | 0.7273 | 0.7273 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | | 0.1235 | 20.0 | 40 | 0.6664 | 34.2105 | 0.3970 | 0.4021 | 0.3994 | 0.3970 | 0.4021 | 0.3994 | 0.3905 | 0.3956 | 0.3929 | 0.5197 | 0.5402 | 0.5292 | 0.3970 | 0.4021 | 0.3994 | 0.7273 | 0.7273 | 0.7273 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.0667 | 0.0769 | 0.0714 | 0.2667 | 0.3077 | 0.2857 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1 - Datasets 2.20.0 - Tokenizers 0.19.1