File size: 19,094 Bytes
cfc6b55 5142dd8 cfc6b55 5142dd8 cfc6b55 5142dd8 cfc6b55 5142dd8 cfc6b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
language:
- he
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# he-cantillation
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2357
- Wer: 12.4316
- Avg Precision Exact: 0.8908
- Avg Recall Exact: 0.8920
- Avg F1 Exact: 0.8911
- Avg Precision Letter Shift: 0.9098
- Avg Recall Letter Shift: 0.9110
- Avg F1 Letter Shift: 0.9100
- Avg Precision Word Level: 0.9122
- Avg Recall Word Level: 0.9134
- Avg F1 Word Level: 0.9125
- Avg Precision Word Shift: 0.9710
- Avg Recall Word Shift: 0.9730
- Avg F1 Word Shift: 0.9716
- Precision Median Exact: 1.0
- Recall Median Exact: 1.0
- F1 Median Exact: 1.0
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.1429
- Recall Min Word Shift: 0.1111
- F1 Min Word Shift: 0.125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 200000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
|:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|
| No log | 0.0001 | 1 | 8.6313 | 200.3067 | 0.0004 | 0.0014 | 0.0004 | 0.0046 | 0.0050 | 0.0041 | 0.0031 | 0.0092 | 0.0033 | 0.0326 | 0.0360 | 0.0303 | 0.0 | 0.0 | 0.0 | 0.1111 | 1.0 | 0.2000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0158 | 0.9410 | 10000 | 0.1501 | 17.4538 | 0.8417 | 0.8453 | 0.8428 | 0.8645 | 0.8682 | 0.8656 | 0.8682 | 0.8723 | 0.8695 | 0.9449 | 0.9497 | 0.9463 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0909 | 0.0909 | 0.1111 |
| 0.0149 | 1.8820 | 20000 | 0.1635 | 15.7724 | 0.8627 | 0.8659 | 0.8639 | 0.8851 | 0.8885 | 0.8864 | 0.8881 | 0.8915 | 0.8894 | 0.9560 | 0.9594 | 0.9571 | 0.9286 | 0.9333 | 0.9412 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0053 | 2.8230 | 30000 | 0.1755 | 14.9261 | 0.8767 | 0.8763 | 0.8761 | 0.8990 | 0.8986 | 0.8983 | 0.9016 | 0.9013 | 0.9010 | 0.9609 | 0.9621 | 0.9610 | 0.9333 | 0.9375 | 0.9474 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0034 | 3.7640 | 40000 | 0.1817 | 15.5691 | 0.8584 | 0.8592 | 0.8584 | 0.8794 | 0.8804 | 0.8794 | 0.8823 | 0.8833 | 0.8824 | 0.9538 | 0.9566 | 0.9547 | 0.9333 | 0.9333 | 0.9444 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0005 | 4.7050 | 50000 | 0.1857 | 14.4050 | 0.8793 | 0.8793 | 0.8789 | 0.8998 | 0.8999 | 0.8994 | 0.9024 | 0.9028 | 0.9022 | 0.9629 | 0.9637 | 0.9628 | 0.9474 | 1.0 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0021 | 5.6460 | 60000 | 0.1945 | 14.5196 | 0.8716 | 0.8762 | 0.8734 | 0.8930 | 0.8978 | 0.8949 | 0.8960 | 0.9006 | 0.8979 | 0.9607 | 0.9659 | 0.9628 | 0.9333 | 1.0 | 0.9565 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.1 | 0.0952 |
| 0.0016 | 6.5870 | 70000 | 0.1987 | 14.0872 | 0.8773 | 0.8781 | 0.8772 | 0.8985 | 0.8993 | 0.8984 | 0.9015 | 0.9025 | 0.9015 | 0.9641 | 0.9661 | 0.9646 | 0.9412 | 1.0 | 0.9600 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0005 | 7.5280 | 80000 | 0.2020 | 13.7288 | 0.8801 | 0.8825 | 0.8809 | 0.9015 | 0.9041 | 0.9024 | 0.9044 | 0.9069 | 0.9052 | 0.9673 | 0.9709 | 0.9687 | 1.0 | 1.0 | 0.9630 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0021 | 8.4690 | 90000 | 0.2088 | 14.3829 | 0.8767 | 0.8782 | 0.8770 | 0.8980 | 0.8997 | 0.8984 | 0.9009 | 0.9026 | 0.9013 | 0.9629 | 0.9664 | 0.9640 | 0.9412 | 1.0 | 0.9600 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0013 | 9.4100 | 100000 | 0.2041 | 13.4146 | 0.8826 | 0.8837 | 0.8828 | 0.9025 | 0.9037 | 0.9027 | 0.9052 | 0.9063 | 0.9054 | 0.9681 | 0.9697 | 0.9684 | 1.0 | 1.0 | 0.9630 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0002 | 10.3510 | 110000 | 0.2110 | 13.5329 | 0.8876 | 0.8891 | 0.8880 | 0.9086 | 0.9101 | 0.9089 | 0.9112 | 0.9127 | 0.9115 | 0.9681 | 0.9710 | 0.9690 | 1.0 | 1.0 | 0.9630 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0003 | 11.2920 | 120000 | 0.2123 | 13.5033 | 0.8822 | 0.8828 | 0.8821 | 0.9023 | 0.9029 | 0.9022 | 0.9048 | 0.9056 | 0.9048 | 0.9679 | 0.9698 | 0.9684 | 1.0 | 1.0 | 0.9677 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0011 | 12.2330 | 130000 | 0.2082 | 13.5070 | 0.8884 | 0.8881 | 0.8878 | 0.9085 | 0.9083 | 0.9080 | 0.9109 | 0.9107 | 0.9104 | 0.9677 | 0.9683 | 0.9675 | 1.0 | 1.0 | 0.9677 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.0769 | 0.0769 |
| 0.0 | 13.1740 | 140000 | 0.2181 | 13.4220 | 0.8835 | 0.8860 | 0.8844 | 0.9028 | 0.9054 | 0.9038 | 0.9056 | 0.9082 | 0.9065 | 0.9671 | 0.9706 | 0.9684 | 1.0 | 1.0 | 0.9677 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0 | 14.1150 | 150000 | 0.2240 | 13.0266 | 0.8847 | 0.8860 | 0.8850 | 0.9043 | 0.9057 | 0.9046 | 0.9073 | 0.9086 | 0.9075 | 0.9692 | 0.9719 | 0.9701 | 1.0 | 1.0 | 0.9677 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0002 | 15.0560 | 160000 | 0.2245 | 13.0155 | 0.8828 | 0.8831 | 0.8826 | 0.9019 | 0.9022 | 0.9017 | 0.9049 | 0.9053 | 0.9048 | 0.9701 | 0.9717 | 0.9704 | 1.0 | 1.0 | 0.9687 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0001 | 15.9970 | 170000 | 0.2272 | 13.0155 | 0.8855 | 0.8861 | 0.8854 | 0.9043 | 0.9049 | 0.9042 | 0.9070 | 0.9078 | 0.9070 | 0.9693 | 0.9710 | 0.9697 | 1.0 | 1.0 | 0.9677 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0 | 16.9380 | 180000 | 0.2312 | 12.6053 | 0.8875 | 0.8892 | 0.8880 | 0.9062 | 0.9079 | 0.9067 | 0.9089 | 0.9106 | 0.9093 | 0.9703 | 0.9728 | 0.9711 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0 | 17.8790 | 190000 | 0.2324 | 12.5684 | 0.8898 | 0.8910 | 0.8900 | 0.9089 | 0.9102 | 0.9092 | 0.9113 | 0.9127 | 0.9116 | 0.9703 | 0.9726 | 0.9710 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0 | 18.8200 | 200000 | 0.2357 | 12.4316 | 0.8908 | 0.8920 | 0.8911 | 0.9098 | 0.9110 | 0.9100 | 0.9122 | 0.9134 | 0.9125 | 0.9710 | 0.9730 | 0.9716 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|