File size: 41,210 Bytes
0bcbb23 2e0e2fa 0bcbb23 2e0e2fa 0bcbb23 2e0e2fa 0bcbb23 2e0e2fa 0bcbb23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
language:
- he
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# he-cantillation
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2642
- Wer: 16.6210
- Avg Precision Exact: 0.8369
- Avg Recall Exact: 0.8382
- Avg F1 Exact: 0.8371
- Avg Precision Letter Shift: 0.8586
- Avg Recall Letter Shift: 0.8599
- Avg F1 Letter Shift: 0.8588
- Avg Precision Word Level: 0.8633
- Avg Recall Word Level: 0.8652
- Avg F1 Word Level: 0.8637
- Avg Precision Word Shift: 0.9480
- Avg Recall Word Shift: 0.9510
- Avg F1 Word Shift: 0.9488
- Precision Median Exact: 0.9231
- Recall Median Exact: 0.9231
- F1 Median Exact: 0.9286
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.1429
- Recall Min Word Shift: 0.125
- F1 Min Word Shift: 0.1333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
|:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|
| No log | 0.0001 | 1 | 9.1305 | 104.1002 | 0.0008 | 0.0017 | 0.0007 | 0.0055 | 0.0068 | 0.0048 | 0.0027 | 0.0187 | 0.0046 | 0.0242 | 0.0322 | 0.0233 | 0.0 | 0.0 | 0.0 | 0.1429 | 1.0 | 0.1818 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1404 | 0.5167 | 10000 | 0.2062 | 31.3792 | 0.7018 | 0.7031 | 0.7017 | 0.7345 | 0.7359 | 0.7344 | 0.7437 | 0.7448 | 0.7434 | 0.8802 | 0.8850 | 0.8815 | 0.8 | 0.8 | 0.8 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.125 | 0.1111 |
| 0.0565 | 1.0334 | 20000 | 0.1776 | 25.7434 | 0.7505 | 0.7534 | 0.7513 | 0.7792 | 0.7821 | 0.7799 | 0.7865 | 0.7900 | 0.7875 | 0.9069 | 0.9122 | 0.9086 | 0.8462 | 0.8462 | 0.8485 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.0909 | 0.0833 |
| 0.0343 | 1.5501 | 30000 | 0.1768 | 24.2487 | 0.7700 | 0.7691 | 0.7689 | 0.7984 | 0.7974 | 0.7972 | 0.8052 | 0.8043 | 0.8040 | 0.9143 | 0.9158 | 0.9142 | 0.875 | 0.875 | 0.875 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0202 | 2.0668 | 40000 | 0.1824 | 22.5935 | 0.7783 | 0.7853 | 0.7812 | 0.8052 | 0.8126 | 0.8082 | 0.8107 | 0.8185 | 0.8139 | 0.9196 | 0.9301 | 0.9240 | 0.8889 | 0.9 | 0.8889 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.0136 | 2.5834 | 50000 | 0.1848 | 21.7408 | 0.7886 | 0.7912 | 0.7893 | 0.8142 | 0.8169 | 0.8150 | 0.8199 | 0.8229 | 0.8208 | 0.9234 | 0.9281 | 0.9249 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.0338 | 3.1001 | 60000 | 0.1936 | 21.6149 | 0.7881 | 0.7909 | 0.7889 | 0.8137 | 0.8166 | 0.8146 | 0.8188 | 0.8233 | 0.8203 | 0.9222 | 0.9295 | 0.9250 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.0148 | 3.6168 | 70000 | 0.1932 | 20.5198 | 0.8045 | 0.8086 | 0.8059 | 0.8295 | 0.8339 | 0.8311 | 0.8346 | 0.8394 | 0.8364 | 0.9261 | 0.9333 | 0.9289 | 0.9 | 0.9091 | 0.9 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.007 | 4.1335 | 80000 | 0.1995 | 20.3562 | 0.8039 | 0.8048 | 0.8038 | 0.8285 | 0.8296 | 0.8285 | 0.8340 | 0.8356 | 0.8342 | 0.9314 | 0.9354 | 0.9326 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0073 | 4.6502 | 90000 | 0.2057 | 20.7275 | 0.8005 | 0.8036 | 0.8015 | 0.8252 | 0.8284 | 0.8262 | 0.8304 | 0.8335 | 0.8314 | 0.9252 | 0.9312 | 0.9274 | 0.9091 | 0.9091 | 0.9 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0033 | 5.1669 | 100000 | 0.2070 | 19.5727 | 0.8112 | 0.8105 | 0.8103 | 0.8356 | 0.8350 | 0.8347 | 0.8410 | 0.8407 | 0.8403 | 0.9364 | 0.9383 | 0.9366 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0058 | 5.6836 | 110000 | 0.2166 | 19.9157 | 0.8124 | 0.8128 | 0.8121 | 0.8371 | 0.8377 | 0.8368 | 0.8426 | 0.8434 | 0.8424 | 0.9334 | 0.9368 | 0.9344 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0022 | 6.2003 | 120000 | 0.2149 | 19.3398 | 0.8147 | 0.8156 | 0.8146 | 0.8385 | 0.8395 | 0.8384 | 0.8438 | 0.8450 | 0.8438 | 0.9363 | 0.9395 | 0.9371 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0032 | 6.7170 | 130000 | 0.2221 | 19.3744 | 0.8092 | 0.8134 | 0.8107 | 0.8333 | 0.8378 | 0.8350 | 0.8392 | 0.8439 | 0.8409 | 0.9326 | 0.9391 | 0.9351 | 0.9091 | 0.9167 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0909 | 0.0667 | 0.0769 |
| 0.0033 | 7.2336 | 140000 | 0.2266 | 19.7017 | 0.8094 | 0.8137 | 0.8109 | 0.8344 | 0.8390 | 0.8361 | 0.8397 | 0.8447 | 0.8416 | 0.9317 | 0.9391 | 0.9347 | 0.9091 | 0.9167 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0028 | 7.7503 | 150000 | 0.2305 | 19.2454 | 0.8130 | 0.8163 | 0.8141 | 0.8365 | 0.8400 | 0.8377 | 0.8414 | 0.8456 | 0.8430 | 0.9331 | 0.9380 | 0.9348 | 0.9091 | 0.9167 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0018 | 8.2670 | 160000 | 0.2335 | 19.0220 | 0.8196 | 0.8232 | 0.8209 | 0.8429 | 0.8468 | 0.8443 | 0.8480 | 0.8524 | 0.8496 | 0.9366 | 0.9435 | 0.9393 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.005 | 8.7837 | 170000 | 0.2321 | 18.8961 | 0.8197 | 0.8217 | 0.8202 | 0.8432 | 0.8453 | 0.8437 | 0.8482 | 0.8508 | 0.8489 | 0.9372 | 0.9415 | 0.9387 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0015 | 9.3004 | 180000 | 0.2320 | 18.7734 | 0.8198 | 0.8223 | 0.8205 | 0.8429 | 0.8456 | 0.8437 | 0.8477 | 0.8508 | 0.8487 | 0.9381 | 0.9431 | 0.9399 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0032 | 9.8171 | 190000 | 0.2357 | 18.4178 | 0.8207 | 0.8226 | 0.8211 | 0.8440 | 0.8460 | 0.8445 | 0.8485 | 0.8513 | 0.8493 | 0.9390 | 0.9434 | 0.9405 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0025 | 10.3338 | 200000 | 0.2467 | 19.3430 | 0.8115 | 0.8124 | 0.8114 | 0.8346 | 0.8355 | 0.8345 | 0.8395 | 0.8409 | 0.8397 | 0.9325 | 0.9363 | 0.9337 | 0.9091 | 0.9091 | 0.9091 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0007 | 10.8505 | 210000 | 0.2415 | 18.6381 | 0.8175 | 0.8200 | 0.8182 | 0.8411 | 0.8437 | 0.8419 | 0.8455 | 0.8484 | 0.8464 | 0.9381 | 0.9430 | 0.9399 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0009 | 11.3672 | 220000 | 0.2405 | 18.0843 | 0.8247 | 0.8244 | 0.8241 | 0.8475 | 0.8474 | 0.8469 | 0.8522 | 0.8526 | 0.8519 | 0.9410 | 0.9437 | 0.9416 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.0027 | 11.8838 | 230000 | 0.2407 | 18.3517 | 0.8176 | 0.8208 | 0.8187 | 0.8405 | 0.8438 | 0.8416 | 0.8455 | 0.8491 | 0.8468 | 0.9377 | 0.9438 | 0.9401 | 0.9167 | 0.9167 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0004 | 12.4005 | 240000 | 0.2424 | 18.4808 | 0.8130 | 0.8141 | 0.8130 | 0.8361 | 0.8374 | 0.8362 | 0.8412 | 0.8428 | 0.8415 | 0.9373 | 0.9409 | 0.9384 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0909 | 0.0833 | 0.0870 |
| 0.0006 | 12.9172 | 250000 | 0.2495 | 18.2982 | 0.8213 | 0.8236 | 0.8219 | 0.8454 | 0.8480 | 0.8461 | 0.8501 | 0.8533 | 0.8512 | 0.9374 | 0.9428 | 0.9394 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0015 | 13.4339 | 260000 | 0.2507 | 17.9647 | 0.8283 | 0.8315 | 0.8294 | 0.8508 | 0.8541 | 0.8519 | 0.8554 | 0.8589 | 0.8566 | 0.9401 | 0.9460 | 0.9424 | 0.9167 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.0005 | 13.9506 | 270000 | 0.2497 | 18.2668 | 0.8255 | 0.8255 | 0.8250 | 0.8481 | 0.8483 | 0.8477 | 0.8528 | 0.8534 | 0.8526 | 0.9387 | 0.9418 | 0.9396 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0625 | 0.0714 | 0.0667 |
| 0.0003 | 14.4673 | 280000 | 0.2543 | 18.2038 | 0.8243 | 0.8289 | 0.8261 | 0.8466 | 0.8515 | 0.8485 | 0.8513 | 0.8567 | 0.8534 | 0.9359 | 0.9427 | 0.9386 | 0.9167 | 0.9167 | 0.9167 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0004 | 14.9840 | 290000 | 0.2506 | 17.8357 | 0.8278 | 0.8286 | 0.8277 | 0.8503 | 0.8513 | 0.8503 | 0.8552 | 0.8568 | 0.8555 | 0.9404 | 0.9445 | 0.9418 | 0.9167 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0909 | 0.0909 | 0.0909 |
| 0.0005 | 15.5007 | 300000 | 0.2551 | 17.8923 | 0.8219 | 0.8259 | 0.8234 | 0.8449 | 0.8492 | 0.8465 | 0.8495 | 0.8541 | 0.8513 | 0.9391 | 0.9453 | 0.9415 | 0.9167 | 0.9167 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0003 | 16.0174 | 310000 | 0.2566 | 17.6469 | 0.8287 | 0.8285 | 0.8281 | 0.8517 | 0.8516 | 0.8512 | 0.8567 | 0.8568 | 0.8562 | 0.9431 | 0.9454 | 0.9437 | 0.9231 | 0.9167 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0769 | 0.1 | 0.0870 |
| 0.0005 | 16.5340 | 320000 | 0.2564 | 17.8168 | 0.8242 | 0.8279 | 0.8255 | 0.8478 | 0.8516 | 0.8492 | 0.8525 | 0.8564 | 0.8539 | 0.9428 | 0.9477 | 0.9446 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0003 | 17.0507 | 330000 | 0.2518 | 17.5682 | 0.8289 | 0.8328 | 0.8304 | 0.8521 | 0.8562 | 0.8536 | 0.8565 | 0.8608 | 0.8581 | 0.9439 | 0.9501 | 0.9464 | 0.9167 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0002 | 17.5674 | 340000 | 0.2561 | 17.6311 | 0.8281 | 0.8300 | 0.8286 | 0.8508 | 0.8528 | 0.8513 | 0.8555 | 0.8577 | 0.8561 | 0.9434 | 0.9469 | 0.9445 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0002 | 18.0841 | 350000 | 0.2566 | 17.5399 | 0.8275 | 0.8301 | 0.8283 | 0.8505 | 0.8532 | 0.8513 | 0.8552 | 0.8582 | 0.8562 | 0.9433 | 0.9487 | 0.9453 | 0.9167 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0007 | 18.6008 | 360000 | 0.2592 | 17.6437 | 0.8299 | 0.8336 | 0.8312 | 0.8530 | 0.8568 | 0.8544 | 0.8574 | 0.8616 | 0.8590 | 0.9432 | 0.9487 | 0.9453 | 0.9167 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0003 | 19.1175 | 370000 | 0.2609 | 17.4958 | 0.8337 | 0.8362 | 0.8344 | 0.8570 | 0.8597 | 0.8578 | 0.8615 | 0.8646 | 0.8625 | 0.9450 | 0.9499 | 0.9468 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 19.6342 | 380000 | 0.2601 | 17.5053 | 0.8286 | 0.8305 | 0.8291 | 0.8513 | 0.8534 | 0.8519 | 0.8558 | 0.8582 | 0.8565 | 0.9446 | 0.9486 | 0.9460 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0 | 20.1509 | 390000 | 0.2595 | 16.9200 | 0.8378 | 0.8387 | 0.8378 | 0.8602 | 0.8610 | 0.8601 | 0.8648 | 0.8658 | 0.8648 | 0.9480 | 0.9499 | 0.9484 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1000 |
| 0.0 | 20.6676 | 400000 | 0.2615 | 17.1528 | 0.8337 | 0.8337 | 0.8332 | 0.8558 | 0.8558 | 0.8553 | 0.8603 | 0.8608 | 0.8601 | 0.9464 | 0.9490 | 0.9470 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1111 | 0.125 |
| 0.0 | 21.1843 | 410000 | 0.2617 | 17.0333 | 0.8351 | 0.8345 | 0.8344 | 0.8565 | 0.8559 | 0.8557 | 0.8608 | 0.8605 | 0.8601 | 0.9472 | 0.9484 | 0.9472 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 21.7009 | 420000 | 0.2644 | 17.0301 | 0.8360 | 0.8353 | 0.8352 | 0.8586 | 0.8578 | 0.8577 | 0.8635 | 0.8631 | 0.8628 | 0.9484 | 0.9498 | 0.9485 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0002 | 22.2176 | 430000 | 0.2624 | 17.1591 | 0.8329 | 0.8333 | 0.8326 | 0.8550 | 0.8555 | 0.8548 | 0.8599 | 0.8608 | 0.8598 | 0.9470 | 0.9494 | 0.9475 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.1 | 0.1176 |
| 0.0 | 22.7343 | 440000 | 0.2643 | 17.1402 | 0.8330 | 0.8347 | 0.8333 | 0.8549 | 0.8567 | 0.8553 | 0.8597 | 0.8618 | 0.8602 | 0.9455 | 0.9487 | 0.9464 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0 | 23.2510 | 450000 | 0.2634 | 16.8287 | 0.8358 | 0.8366 | 0.8357 | 0.8576 | 0.8584 | 0.8575 | 0.8622 | 0.8634 | 0.8623 | 0.9465 | 0.9492 | 0.9472 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0714 | 0.0833 |
| 0.0 | 23.7677 | 460000 | 0.2643 | 16.8098 | 0.8331 | 0.8343 | 0.8332 | 0.8553 | 0.8567 | 0.8555 | 0.8600 | 0.8618 | 0.8604 | 0.9474 | 0.9507 | 0.9485 | 0.9231 | 0.9231 | 0.9231 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0 | 24.2844 | 470000 | 0.2641 | 16.9294 | 0.8361 | 0.8372 | 0.8362 | 0.8581 | 0.8592 | 0.8581 | 0.8626 | 0.8643 | 0.8629 | 0.9471 | 0.9505 | 0.9482 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0 | 24.8011 | 480000 | 0.2646 | 16.8004 | 0.8338 | 0.8348 | 0.8338 | 0.8553 | 0.8563 | 0.8553 | 0.8600 | 0.8617 | 0.8603 | 0.9465 | 0.9497 | 0.9475 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0 | 25.3178 | 490000 | 0.2639 | 16.7154 | 0.8372 | 0.8387 | 0.8374 | 0.8589 | 0.8605 | 0.8592 | 0.8636 | 0.8658 | 0.8642 | 0.9475 | 0.9509 | 0.9486 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
| 0.0 | 25.8345 | 500000 | 0.2642 | 16.6210 | 0.8369 | 0.8382 | 0.8371 | 0.8586 | 0.8599 | 0.8588 | 0.8633 | 0.8652 | 0.8637 | 0.9480 | 0.9510 | 0.9488 | 0.9231 | 0.9231 | 0.9286 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.125 | 0.1333 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|