File size: 4,577 Bytes
4a85ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Twitter 2021 124M (RoBERTa-base)

This is a RoBERTa-base model trained on 124M tweets until the end of 2021.
More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/pdf/TBD.pdf).

Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms).

For other models trained until different periods, check [https://huggingface.co/cardiffnlp](https://huggingface.co/cardiffnlp).

## Preprocess Text 
Replace usernames and links for placeholders: "@user" and "http".
If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data).
```python
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
```

## Example Masked Language Model 

```python
from transformers import pipeline, AutoTokenizer

MODEL = "cardiffnlp/twitter-roberta-base-2021-124m"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)

def print_candidates():
    for i in range(5):
        token = tokenizer.decode(candidates[i]['token'])
        score = candidates[i]['score']
        print("%d) %.5f %s" % (i+1, score, token))

texts = [
    "So glad I'm <mask> vaccinated.",
    "I keep forgetting to bring a <mask>.",
    "Looking forward to watching <mask> Game tonight!",
]
for text in texts:
    t = preprocess(text)
    print(f"{'-'*30}\n{t}")
    candidates = fill_mask(t)
    print_candidates()
```

Output: 

```
------------------------------
So glad I'm <mask> vaccinated.
1) 0.39613  fully
2) 0.26333  getting
3) 0.18988  not
4) 0.02312  still
5) 0.02099  already
------------------------------
I keep forgetting to bring a <mask>.
1) 0.08356  mask
2) 0.05696  book
3) 0.03505  bag
4) 0.02983  backpack
5) 0.02847  blanket
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.46618  the
2) 0.24042  The
3) 0.03216  End
4) 0.02925  Squid
5) 0.02610  this
```

## Example Tweet Embeddings
```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter

def get_embedding(text):
  text = preprocess(text)
  encoded_input = tokenizer(text, return_tensors='pt')
  features = model(**encoded_input)
  features = features[0].detach().cpu().numpy() 
  features_mean = np.mean(features[0], axis=0) 
  return features_mean


MODEL = "cardiffnlp/twitter-roberta-base-2021-124m"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)

query = "The book was awesome"
tweets = ["I just ordered fried chicken 🐣", 
          "The movie was great",
          "What time is the next game?",
          "Just finished reading 'Embeddings in NLP'"]

sims = Counter()
for tweet in tweets:
    sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
    sims[tweet] = sim

print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
    print("%d) %.5f %s" % (idx+1, sim, tweet))
```
Output: 

```
Most similar to:  The book was awesome
------------------------------
1) 0.98969 The movie was great
2) 0.96102 Just finished reading 'Embeddings in NLP'
3) 0.95565 I just ordered fried chicken 🐣
4) 0.95041 What time is the next game?
```

## Example Feature Extraction 

```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np

MODEL = "cardiffnlp/twitter-roberta-base-2021-124m"
tokenizer = AutoTokenizer.from_pretrained(MODEL)

text = "Good night 😊"
text = preprocess(text)

# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy() 
features_mean = np.mean(features[0], axis=0) 
#features_max = np.max(features[0], axis=0)

# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0) 
# #features_max = np.max(features[0], axis=0)
```