--- language: - en license: mit datasets: - cardiffnlp/x_sensitive metrics: - f1 widget: - text: Call me today to earn some money mofos! pipeline_tag: text-classification --- # twitter-roberta-base-sensitive-binary This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for detecting sensitive content (multilabel classification) on the [_X-Sensitive_](https://huggingface.co/datasets/cardiffnlp/x_sensitive) dataset. The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m). ## Labels ``` "id2label": { "0": "conflictual", "1": "profanity", "2": "sex", "3": "drugs", "4": "selfharm", "5": "spam" } ``` ## Full classification example ```python from transformers import pipeline pipe = pipeline(model='cardiffnlp/twitter-roberta-base-sensitive-multilabel') text = "Call me today to earn some money mofos!" pipe(text) ``` Output: ``` [[{'label': 'conflictual', 'score': 0.004052792210131884}, {'label': 'profanity', 'score': 0.9994163513183594}, {'label': 'sex', 'score': 0.0066294302232563496}, {'label': 'drugs', 'score': 0.0027938704006373882}, {'label': 'selfharm', 'score': 0.002117963507771492}, {'label': 'spam', 'score': 0.992584228515625}]] ``` ## BibTeX entry and citation info TBA