--- language: - en license: mit datasets: - cardiffnlp/x_sensitive metrics: - f1 widget: - text: Call me today to earn some money mofos! pipeline_tag: text-classification --- # twitter-roberta-base-sensitive-binary This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for detecting sensitive content (multilabel classification) on the [_X-Sensitive_](https://huggingface.co/datasets/cardiffnlp/x_sensitive) dataset. The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m). ## Labels ``` "id2label": { "0": "conflictual", "1": "profanity", "2": "sex", "3": "drugs", "4": "selfharm", "5": "spam" "6": "not-sensitive" } ``` ## Full classification example ```python from transformers import pipeline pipe = pipeline(model='cardiffnlp/twitter-roberta-base-sensitive-multilabel') text = "Call me today to earn some money mofos!" pipe(text) ``` Output: ``` [[{'label': 'conflictual', 'score': 0.07463070750236511}, {'label': 'profanity', 'score': 0.9888035655021667}, {'label': 'sex', 'score': 0.0032050721347332}, {'label': 'drugs', 'score': 0.004522938746958971}, {'label': 'selfharm', 'score': 0.0036733713932335377}, {'label': 'spam', 'score': 0.007278479170054197}, {'label': 'not-sensitive', 'score': 0.00972921121865511}]] ``` ## BibTeX entry and citation info ``` @article{antypas2024sensitive, title={Sensitive Content Classification in Social Media: A Holistic Resource and Evaluation}, author={Antypas, Dimosthenis and Sen, Indira and Perez-Almendros, Carla and Camacho-Collados, Jose and Barbieri, Francesco}, journal={arXiv preprint arXiv:2411.19832}, year={2024} } ```