--- language: - en widget: - text: Call me today to earn some money mofos! datasets: - cardiffnlp/x_sensitive license: mit metrics: - f1 pipeline_tag: text-classification --- # twitter-roberta-large-sensitive-binary This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for detecting sensitive content (binary classification) on the [_X-Sensitive_](https://huggingface.co/datasets/cardiffnlp/x_sensitive) dataset. The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). ## Labels ``` "id2label": { "0": "non-sensitive", "1": "sensitive" } ``` ## Full classification example ```python from transformers import pipeline pipe = pipeline(model='cardiffnlp/twitter-roberta-large-sensitive-binary') text = "Call me today to earn some money mofos!" pipe(text) ``` Output: ``` [{'label': 'sensitive', 'score': 0.999821126461029}] ``` ## BibTeX entry and citation info ``` @article{antypas2024sensitive, title={Sensitive Content Classification in Social Media: A Holistic Resource and Evaluation}, author={Antypas, Dimosthenis and Sen, Indira and Perez-Almendros, Carla and Camacho-Collados, Jose and Barbieri, Francesco}, journal={arXiv preprint arXiv:2411.19832}, year={2024} } ```