File size: 1,947 Bytes
eb101dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
model-index:
- name: speecht5-finetuned-tamil
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5-finetuned-tamil

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5372

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7957        | 0.27  | 100  | 0.6803          |
| 0.68          | 0.54  | 200  | 0.6006          |
| 0.6305        | 0.81  | 300  | 0.5635          |
| 0.6067        | 1.09  | 400  | 0.5566          |
| 0.5979        | 1.36  | 500  | 0.5488          |
| 0.6046        | 1.63  | 600  | 0.5463          |
| 0.5913        | 1.9   | 700  | 0.5411          |
| 0.5905        | 2.17  | 800  | 0.5419          |
| 0.5868        | 2.44  | 900  | 0.5422          |
| 0.5803        | 2.71  | 1000 | 0.5372          |


### Framework versions

- Transformers 4.38.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.15.2