--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - wildcard widget: - text: a photo of hasbulla person --- # DreamBooth model for the hasbulla concept trained by carlosabadia on the carlosabadia/hasbulla dataset. This is a Stable Diffusion model fine-tuned on the hasbulla concept with DreamBooth. It can be used by modifying the `instance_prompt`: **hasbulla person** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `Hasbulla` images for the wildcard theme. It was also featured in Hasbulla's Twitter account!
## Images generated by model # Gradio & Colab Model supported in a [Gradio](https://github.com/gradio-app/gradio) Web UI and Colab: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/carlosabadia/hasbulla) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZB1_Z89BnjW_P76OLoQdcqVgPZfN8HEG?usp=sharing) ## Usage ```python import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler pipe = StableDiffusionPipeline.from_pretrained( "carlosabadia/hasbulla", scheduler = DPMSolverMultistepScheduler.from_pretrained("carlosabadia/hasbulla", subfolder="scheduler"), torch_dtype=torch.float16, ).to("cuda") guidance_scale = 7 prompt = "A portrait of hasbulla person" images = pipe(prompt, num_images_per_prompt=1, num_inference_steps=25, guidance_scale=guidance_scale).images image = images[0] image.save("hasbulla.png") ``` ![visitors](https://visitor-badge.glitch.me/badge?page_id=carlosabadia/hasbulla)Hasbulla Van Gogh pic.twitter.com/5f0uPKhi6U
— Hasbulla 🐐 (@HasbullaHive) January 4, 2023