carolinetfls
commited on
Commit
•
072315c
1
Parent(s):
08dc6e0
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -57,69 +57,94 @@ The following hyperparameters were used during training:
|
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
-
- num_epochs:
|
61 |
- mixed_precision_training: Native AMP
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9392265193370166
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2653
|
35 |
+
- Accuracy: 0.9392
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 20
|
61 |
- mixed_precision_training: Native AMP
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.2307 | 0.25 | 100 | 0.4912 | 0.8729 |
|
68 |
+
| 0.0652 | 0.49 | 200 | 0.3280 | 0.9085 |
|
69 |
+
| 0.1854 | 0.74 | 300 | 0.4850 | 0.8711 |
|
70 |
+
| 0.1831 | 0.98 | 400 | 0.3827 | 0.8938 |
|
71 |
+
| 0.1636 | 1.23 | 500 | 0.4071 | 0.9012 |
|
72 |
+
| 0.0868 | 1.47 | 600 | 0.3980 | 0.8999 |
|
73 |
+
| 0.2298 | 1.72 | 700 | 0.4855 | 0.8846 |
|
74 |
+
| 0.2291 | 1.97 | 800 | 0.4019 | 0.8883 |
|
75 |
+
| 0.2698 | 2.21 | 900 | 0.3855 | 0.8944 |
|
76 |
+
| 0.0923 | 2.46 | 1000 | 0.3690 | 0.8938 |
|
77 |
+
| 0.1396 | 2.7 | 1100 | 0.4715 | 0.8760 |
|
78 |
+
| 0.174 | 2.95 | 1200 | 0.3710 | 0.9006 |
|
79 |
+
| 0.1009 | 3.19 | 1300 | 0.3481 | 0.9030 |
|
80 |
+
| 0.1162 | 3.44 | 1400 | 0.3502 | 0.9153 |
|
81 |
+
| 0.1737 | 3.69 | 1500 | 0.4034 | 0.8999 |
|
82 |
+
| 0.2478 | 3.93 | 1600 | 0.4053 | 0.8913 |
|
83 |
+
| 0.1471 | 4.18 | 1700 | 0.3555 | 0.9036 |
|
84 |
+
| 0.1873 | 4.42 | 1800 | 0.3769 | 0.9122 |
|
85 |
+
| 0.0615 | 4.67 | 1900 | 0.4147 | 0.8987 |
|
86 |
+
| 0.1718 | 4.91 | 2000 | 0.2779 | 0.9214 |
|
87 |
+
| 0.1012 | 5.16 | 2100 | 0.3239 | 0.9159 |
|
88 |
+
| 0.0967 | 5.41 | 2200 | 0.3290 | 0.9079 |
|
89 |
+
| 0.0873 | 5.65 | 2300 | 0.4057 | 0.9055 |
|
90 |
+
| 0.0567 | 5.9 | 2400 | 0.3821 | 0.9018 |
|
91 |
+
| 0.1356 | 6.14 | 2500 | 0.4183 | 0.8944 |
|
92 |
+
| 0.168 | 6.39 | 2600 | 0.3755 | 0.9067 |
|
93 |
+
| 0.1592 | 6.63 | 2700 | 0.3413 | 0.9079 |
|
94 |
+
| 0.1239 | 6.88 | 2800 | 0.3299 | 0.9091 |
|
95 |
+
| 0.0382 | 7.13 | 2900 | 0.3391 | 0.9165 |
|
96 |
+
| 0.1167 | 7.37 | 3000 | 0.4274 | 0.8987 |
|
97 |
+
| 0.109 | 7.62 | 3100 | 0.3952 | 0.9018 |
|
98 |
+
| 0.0591 | 7.86 | 3200 | 0.4043 | 0.9122 |
|
99 |
+
| 0.1407 | 8.11 | 3300 | 0.3325 | 0.9134 |
|
100 |
+
| 0.054 | 8.35 | 3400 | 0.3333 | 0.9177 |
|
101 |
+
| 0.0633 | 8.6 | 3500 | 0.3275 | 0.9208 |
|
102 |
+
| 0.1038 | 8.85 | 3600 | 0.3982 | 0.9042 |
|
103 |
+
| 0.0435 | 9.09 | 3700 | 0.3656 | 0.9190 |
|
104 |
+
| 0.1549 | 9.34 | 3800 | 0.3367 | 0.9190 |
|
105 |
+
| 0.2299 | 9.58 | 3900 | 0.3872 | 0.9134 |
|
106 |
+
| 0.0375 | 9.83 | 4000 | 0.3206 | 0.9245 |
|
107 |
+
| 0.0204 | 10.07 | 4100 | 0.3133 | 0.9263 |
|
108 |
+
| 0.1208 | 10.32 | 4200 | 0.3373 | 0.9196 |
|
109 |
+
| 0.0617 | 10.57 | 4300 | 0.3045 | 0.9220 |
|
110 |
+
| 0.1426 | 10.81 | 4400 | 0.2972 | 0.9294 |
|
111 |
+
| 0.0351 | 11.06 | 4500 | 0.3409 | 0.9147 |
|
112 |
+
| 0.0311 | 11.3 | 4600 | 0.3003 | 0.9233 |
|
113 |
+
| 0.1255 | 11.55 | 4700 | 0.3447 | 0.9282 |
|
114 |
+
| 0.0569 | 11.79 | 4800 | 0.2703 | 0.9331 |
|
115 |
+
| 0.0918 | 12.04 | 4900 | 0.3170 | 0.9245 |
|
116 |
+
| 0.0656 | 12.29 | 5000 | 0.3223 | 0.9190 |
|
117 |
+
| 0.0971 | 12.53 | 5100 | 0.3209 | 0.9196 |
|
118 |
+
| 0.0742 | 12.78 | 5200 | 0.3030 | 0.9282 |
|
119 |
+
| 0.0662 | 13.02 | 5300 | 0.2780 | 0.9319 |
|
120 |
+
| 0.0453 | 13.27 | 5400 | 0.3360 | 0.9227 |
|
121 |
+
| 0.0869 | 13.51 | 5500 | 0.2417 | 0.9343 |
|
122 |
+
| 0.1786 | 13.76 | 5600 | 0.3078 | 0.9263 |
|
123 |
+
| 0.1563 | 14.0 | 5700 | 0.3046 | 0.9312 |
|
124 |
+
| 0.0584 | 14.25 | 5800 | 0.3011 | 0.9288 |
|
125 |
+
| 0.0783 | 14.5 | 5900 | 0.2705 | 0.9288 |
|
126 |
+
| 0.0486 | 14.74 | 6000 | 0.2583 | 0.9288 |
|
127 |
+
| 0.094 | 14.99 | 6100 | 0.2854 | 0.9282 |
|
128 |
+
| 0.0852 | 15.23 | 6200 | 0.2693 | 0.9325 |
|
129 |
+
| 0.0665 | 15.48 | 6300 | 0.2754 | 0.9282 |
|
130 |
+
| 0.0948 | 15.72 | 6400 | 0.2598 | 0.9349 |
|
131 |
+
| 0.0368 | 15.97 | 6500 | 0.2875 | 0.9355 |
|
132 |
+
| 0.0031 | 16.22 | 6600 | 0.2679 | 0.9325 |
|
133 |
+
| 0.0796 | 16.46 | 6700 | 0.2642 | 0.9300 |
|
134 |
+
| 0.0903 | 16.71 | 6800 | 0.2977 | 0.9269 |
|
135 |
+
| 0.0952 | 16.95 | 6900 | 0.2615 | 0.9337 |
|
136 |
+
| 0.1344 | 17.2 | 7000 | 0.2948 | 0.9251 |
|
137 |
+
| 0.0854 | 17.44 | 7100 | 0.2748 | 0.9368 |
|
138 |
+
| 0.0891 | 17.69 | 7200 | 0.2386 | 0.9325 |
|
139 |
+
| 0.1202 | 17.94 | 7300 | 0.2509 | 0.9355 |
|
140 |
+
| 0.0832 | 18.18 | 7400 | 0.2406 | 0.9398 |
|
141 |
+
| 0.0949 | 18.43 | 7500 | 0.2356 | 0.9386 |
|
142 |
+
| 0.0404 | 18.67 | 7600 | 0.2415 | 0.9386 |
|
143 |
+
| 0.1008 | 18.92 | 7700 | 0.2582 | 0.9355 |
|
144 |
+
| 0.092 | 19.16 | 7800 | 0.2724 | 0.9325 |
|
145 |
+
| 0.0993 | 19.41 | 7900 | 0.2655 | 0.9325 |
|
146 |
+
| 0.0593 | 19.66 | 8000 | 0.2423 | 0.9386 |
|
147 |
+
| 0.1011 | 19.9 | 8100 | 0.2653 | 0.9392 |
|
148 |
|
149 |
|
150 |
### Framework versions
|