carolinetfls
commited on
Commit
•
523f71d
1
Parent(s):
9d154ab
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -64,31 +64,31 @@ The following hyperparameters were used during training:
|
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.0002 | 9.6 | 1200 | 0.
|
79 |
-
| 0.
|
80 |
-
| 0.0002 | 11.2 | 1400 | 0.
|
81 |
-
| 0.0002 | 12.0 | 1500 | 0.
|
82 |
-
| 0.0001 | 12.8 | 1600 | 0.
|
83 |
-
| 0.
|
84 |
-
| 0.0001 | 14.4 | 1800 | 0.
|
85 |
-
| 0.0001 | 15.2 | 1900 | 0.
|
86 |
-
| 0.0001 | 16.0 | 2000 | 0.
|
87 |
-
| 0.0001 | 16.8 | 2100 | 0.
|
88 |
-
| 0.0001 | 17.6 | 2200 | 0.
|
89 |
-
| 0.0001 | 18.4 | 2300 | 0.
|
90 |
-
| 0.0001 | 19.2 | 2400 | 0.
|
91 |
-
| 0.0001 | 20.0 | 2500 | 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9522292993630573
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2410
|
35 |
+
- Accuracy: 0.9522
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.494 | 0.8 | 100 | 0.4274 | 0.8828 |
|
68 |
+
| 0.246 | 1.6 | 200 | 0.2878 | 0.8930 |
|
69 |
+
| 0.1042 | 2.4 | 300 | 0.2227 | 0.9172 |
|
70 |
+
| 0.0174 | 3.2 | 400 | 0.2208 | 0.9299 |
|
71 |
+
| 0.0088 | 4.0 | 500 | 0.3197 | 0.9185 |
|
72 |
+
| 0.0078 | 4.8 | 600 | 0.2555 | 0.9357 |
|
73 |
+
| 0.0013 | 5.6 | 700 | 0.2599 | 0.9427 |
|
74 |
+
| 0.0068 | 6.4 | 800 | 0.3072 | 0.9312 |
|
75 |
+
| 0.0007 | 7.2 | 900 | 0.2217 | 0.9484 |
|
76 |
+
| 0.0004 | 8.0 | 1000 | 0.2551 | 0.9401 |
|
77 |
+
| 0.0003 | 8.8 | 1100 | 0.2321 | 0.9478 |
|
78 |
+
| 0.0002 | 9.6 | 1200 | 0.2329 | 0.9484 |
|
79 |
+
| 0.0002 | 10.4 | 1300 | 0.2322 | 0.9478 |
|
80 |
+
| 0.0002 | 11.2 | 1400 | 0.2342 | 0.9478 |
|
81 |
+
| 0.0002 | 12.0 | 1500 | 0.2348 | 0.9490 |
|
82 |
+
| 0.0001 | 12.8 | 1600 | 0.2358 | 0.9490 |
|
83 |
+
| 0.0001 | 13.6 | 1700 | 0.2368 | 0.9497 |
|
84 |
+
| 0.0001 | 14.4 | 1800 | 0.2377 | 0.9510 |
|
85 |
+
| 0.0001 | 15.2 | 1900 | 0.2384 | 0.9516 |
|
86 |
+
| 0.0001 | 16.0 | 2000 | 0.2391 | 0.9516 |
|
87 |
+
| 0.0001 | 16.8 | 2100 | 0.2397 | 0.9522 |
|
88 |
+
| 0.0001 | 17.6 | 2200 | 0.2401 | 0.9522 |
|
89 |
+
| 0.0001 | 18.4 | 2300 | 0.2406 | 0.9522 |
|
90 |
+
| 0.0001 | 19.2 | 2400 | 0.2409 | 0.9522 |
|
91 |
+
| 0.0001 | 20.0 | 2500 | 0.2410 | 0.9522 |
|
92 |
|
93 |
|
94 |
### Framework versions
|