{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f453b709d40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689025297808006802, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpWqD2uX4e60A8xOouXKzWzBBg7LT1OuQAAgD8AAIA/EIFZvg46sj4LBe09KjyYvsvYLTzQMpQ8AAAAAAAAAAAAE7g9SI+Ous3Cfzv9T542MaPSusLXk7oAAIA/AACAPw0Zsj0Kd3i5v+uRuouODDbWugo78nO3OQAAAAAAAIA/TYRRPfbkfroWQFS5nJUPtIf+nbr7wnA4AACAPwAAgD9NCXS9e2qiugTbAjrbNXK1DdlJOZZcFrkAAIA/AACAP/3/fL7P4Eo+rj0+PssTg75zdRu8a5ldPQAAAAAAAAAAmnGXvFxzQbqt2Go7xU7Ms6nQCrpzMtyyAACAPwAAgD8zBFG99hRbuhZ3grlF0Qo2BoIXOt4PlzgAAIA/AACAPwBDxD3DCWK6OSSOucAn6LTQ6Hu6xcekOAAAgD8AAIA/WqPQvR+97rkTuPC4zaRgtjrPVTp76A44AACAPwAAgD/mD7y9dGRvPn8jGT3gera+zZurPNKdKbwAAAAAAAAAADNbgjz22DO6795JuYHCn7QKhAw7HVBoOAAAgD8AAIA/upoZvkOqILzV9Nk64XrgOLxajT0bVRG6AACAPwAAgD/aZPO9BIfQPVW+ObxX3ky+PgQavdau1LwAAAAAAAAAAGY8Y72uAbi6Pyweu9q+CbktHnK5Dft5OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUqjmbLEDSMAWyUTegDjAF0lEdAkh8LkGRmsnV9lChoBkdAYWjxkNFz+2gHTegDaAhHQJI0/jKgZjx1fZQoaAZHQGCID63y7PJoB03oA2gIR0CSNxEfkmx/dX2UKGgGR0BixNJ8OTaCaAdN6ANoCEdAkjx7EYO2A3V9lChoBkdAY6OZVn27F2gHTegDaAhHQJJA04dZJTV1fZQoaAZHQGdk75Ec81ZoB03oA2gIR0CSRaIGQjlgdX2UKGgGR0BhCM3AEdNnaAdN6ANoCEdAkkkrn9vS+nV9lChoBkdAaJrgydnTRmgHTegDaAhHQJJK5IVdonN1fZQoaAZHQGhLwE6kqMFoB03oA2gIR0CST//+KjzqdX2UKGgGR0Bpac5n13+uaAdN6ANoCEdAklDtk4FRpHV9lChoBkdAXBnrSmZVn2gHTegDaAhHQJJTcOrhisp1fZQoaAZHQGSYilrM1TBoB03oA2gIR0CSWIIF/x2CdX2UKGgGR0BTyB+SbH6uaAdLxWgIR0CSW6uwosqbdX2UKGgGR0Bmwqs6q815aAdN6ANoCEdAkmBGQwK0D3V9lChoBkdAZZW4x1xKhGgHTegDaAhHQJJu+7GvOhV1fZQoaAZHQGTH/YJ3PiVoB03oA2gIR0CScKONHYpVdX2UKGgGR0Bj/1Gd7OVxaAdN6ANoCEdAknGM1TBInXV9lChoBkdAYc0PwNLDh2gHTegDaAhHQJJzdWBBiTd1fZQoaAZHQGH2aO5rgwZoB03oA2gIR0CSdgkJrtVrdX2UKGgGR0BiPW5avA45aAdN6ANoCEdAkodlfJFLFnV9lChoBkdAYODPBSDRMWgHTegDaAhHQJKNERvm5lR1fZQoaAZHQGT5SZjQRf5oB03oA2gIR0CSkgt/FzdUdX2UKGgGR0BkN6q+8Gs4aAdN6ANoCEdAkpcnzcynDXV9lChoBkdAZbow7DEWI2gHTegDaAhHQJKbcJHAh0R1fZQoaAZHQGXO8/lhgE5oB03oA2gIR0CSndQNTcZcdX2UKGgGR0BlMVJnQID6aAdN6ANoCEdAkqdImgJ1JXV9lChoBkdAY7j0163RX2gHTegDaAhHQJKrbg0j1PF1fZQoaAZHQF+AuiN83MpoB03oA2gIR0CSs1RChN/OdX2UKGgGR0BhvkQqZtvXaAdN6ANoCEdAkrh/uXu3MXV9lChoBkdAYxbMJQcghmgHTegDaAhHQJK9hJul41R1fZQoaAZHQGY9OUMXrMVoB03oA2gIR0CSyN5d4VyndX2UKGgGR0Bi+WWKMvRJaAdN6ANoCEdAksoU4Nqgy3V9lChoBkdAYe0W2PT5PGgHTegDaAhHQJLK7S+g13t1fZQoaAZHQGPYM6JZW7xoB03oA2gIR0CSzOiGFi8WdX2UKGgGR0Bhb7JW/8EWaAdN6ANoCEdAks+HAmAskXV9lChoBkdAZb0zxgAp8WgHTegDaAhHQJLRF5qubI91fZQoaAZHQF8EGL1mJ3xoB03oA2gIR0CS6hVi4J/odX2UKGgGR0BfDIwEhaC+aAdN6ANoCEdAkvDIpQUHp3V9lChoBkdAYDMgW8AaN2gHTegDaAhHQJL2zsa86FN1fZQoaAZHQGKt/L1VYIVoB03oA2gIR0CS+wSL61stdX2UKGgGR0Bg95jYqXnhaAdN6ANoCEdAkv0pmqYJFHV9lChoBkdAZGwbLlmvn2gHTegDaAhHQJMEgYwZflZ1fZQoaAZHQGLw/L9uP3loB03oA2gIR0CTB65M10kodX2UKGgGR0BnmLfk3juKaAdN6ANoCEdAkw1SWZ7Xx3V9lChoBkdAXiNQfp2U0WgHTegDaAhHQJMQ86jnFHd1fZQoaAZHQF8v0Y0l7dBoB03oA2gIR0CTFZ7wazeGdX2UKGgGR0BikKXv6TGHaAdN6ANoCEdAkyPc9fTkQ3V9lChoBkdAYgHHPu5SWWgHTegDaAhHQJMlhikO7QN1fZQoaAZHQGAuDawljVhoB03oA2gIR0CTJrYU34sVdX2UKGgGR0BhWsrkKeCkaAdN6ANoCEdAkykAs052hnV9lChoBkdAXTPTqjafz2gHTegDaAhHQJMradDpkf91fZQoaAZHQFw6lEqlP8BoB03oA2gIR0CTLNTQ3PzGdX2UKGgGR0BjmxiZv1lHaAdN6ANoCEdAk0KjtPYWcnV9lChoBkdAZazOTJQtSWgHTegDaAhHQJNHgd6sySF1fZQoaAZHQGUwrBTGYKJoB03oA2gIR0CTTQ7BfrrxdX2UKGgGR0BjITN+so2GaAdN6ANoCEdAk1GVMM7U5XV9lChoBkdAYxPE3sHB12gHTegDaAhHQJNUTNbC79R1fZQoaAZHQG0SB37k4m1oB02ZAWgIR0CTWit29tdidX2UKGgGR0BlWSsySFGoaAdN6ANoCEdAk15TIzWPLnV9lChoBkdAZyZs0HhS+GgHTegDaAhHQJNh2yMUAT91fZQoaAZHQGadKEWZZ0VoB03oA2gIR0CTZyr7fpEAdX2UKGgGR0Bet9zKcNH6aAdN6ANoCEdAk2qSaEzwdHV9lChoBkdAZdLjvNNahmgHTegDaAhHQJNvi1x82Jl1fZQoaAZHQGOSY2jwhGJoB03oA2gIR0CTepQiiZfEdX2UKGgGR0BcbsXrMTviaAdN6ANoCEdAk3vl10T103V9lChoBkdAYxGDVYp2EGgHTegDaAhHQJN814Z/CqJ1fZQoaAZHQGFyjUd7v5RoB03oA2gIR0CTfuNY8uBddX2UKGgGR0BZRtXLeQ+2aAdN6ANoCEdAk4GsJhOQAHV9lChoBkdAY5jdyksSTWgHTegDaAhHQJOdr5Kvmo11fZQoaAZHQGVpLkCFK05oB03oA2gIR0CTopGbkOqedX2UKGgGR0BlKKAjIJZ4aAdN6ANoCEdAk6gVyFPBSHV9lChoBkdAZlZWwNb1RWgHTegDaAhHQJOsB6eGwid1fZQoaAZHQGFVZ13dKuloB03oA2gIR0CTrgggHNX6dX2UKGgGR0BeYiNjslcAaAdN6ANoCEdAk7HeT/yXlnV9lChoBkdAZ8ta7mMfimgHTegDaAhHQJO030btJFt1fZQoaAZHQGL1pFb3XZpoB03oA2gIR0CTt5Y6XBxhdX2UKGgGR0Bk6BcxCY1HaAdN6ANoCEdAk7zJMHryD3V9lChoBkdAYRQSvC/Gl2gHTegDaAhHQJPAMz3yqdZ1fZQoaAZHQGOOS0Sh8IBoB03oA2gIR0CTxoP4EfT1dX2UKGgGR0Bmp5EhJRO2aAdN6ANoCEdAk9OeJcgQpXV9lChoBkdAZmmuJ1q33GgHTegDaAhHQJPUyB4D9wZ1fZQoaAZHQGPaE2pAD7toB03oA2gIR0CT1aq2BreqdX2UKGgGR0BjSKQ9zOopaAdN6ANoCEdAk9eVNDc/MXV9lChoBkdAXdegRK6FumgHTegDaAhHQJPaF7pmmLt1fZQoaAZHQGYlen62v0RoB03oA2gIR0CT8LrFfiPydX2UKGgGR0BlEGNPxhDxaAdN6ANoCEdAk/UVrIo3JnV9lChoBkdAYk6XZ5AyEmgHTegDaAhHQJP6Am5UcXF1fZQoaAZHQGHQSWqtHQRoB03oA2gIR0CT/n6D5CWvdX2UKGgGR0Biqia7VawEaAdN6ANoCEdAlAC4AGSpznV9lChoBkdAZuG2gnMMZ2gHTegDaAhHQJQFh1+y7f51fZQoaAZHQGROUknkT6BoB03oA2gIR0CUCOzjWCmNdX2UKGgGR0BiXaInBtUGaAdN6ANoCEdAlAuhwMpgC3V9lChoBkdAaB0oc7yQP2gHTegDaAhHQJQQOKdhAnl1fZQoaAZHQGIXK+BYmsxoB03oA2gIR0CUE1armyPddX2UKGgGR0Bj6CTfR/mUaAdN6ANoCEdAlBeyfDk2gnV9lChoBkdAZCpCeEqUeWgHTegDaAhHQJQiS0G/vfF1fZQoaAZHQGaXkPDpC8hoB03oA2gIR0CUI3YoAn2JdX2UKGgGR0Biuq+HrQgLaAdN6ANoCEdAlCRWOhkAgnV9lChoBkdAZMS08/2TPmgHTegDaAhHQJQmT5ftx+91fZQoaAZHQGPiwblzU7VoB03oA2gIR0CUKPNLlFMJdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}