cartesinus
commited on
Commit
·
4efe262
1
Parent(s):
d5f6927
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: fedcsis-slot_baseline-xlm_r-en
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# fedcsis-slot_baseline-xlm_r-en
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1015
|
23 |
+
- Precision: 0.9723
|
24 |
+
- Recall: 0.9726
|
25 |
+
- F1: 0.9725
|
26 |
+
- Accuracy: 0.9860
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 1.2866 | 1.0 | 814 | 0.3188 | 0.8661 | 0.8672 | 0.8666 | 0.9250 |
|
58 |
+
| 0.1956 | 2.0 | 1628 | 0.1299 | 0.9409 | 0.9471 | 0.9440 | 0.9736 |
|
59 |
+
| 0.1063 | 3.0 | 2442 | 0.1196 | 0.9537 | 0.9607 | 0.9572 | 0.9810 |
|
60 |
+
| 0.0558 | 4.0 | 3256 | 0.0789 | 0.9661 | 0.9697 | 0.9679 | 0.9854 |
|
61 |
+
| 0.0367 | 5.0 | 4070 | 0.0824 | 0.9685 | 0.9690 | 0.9687 | 0.9848 |
|
62 |
+
| 0.031 | 6.0 | 4884 | 0.0887 | 0.9712 | 0.9728 | 0.9720 | 0.9859 |
|
63 |
+
| 0.0233 | 7.0 | 5698 | 0.0829 | 0.9736 | 0.9744 | 0.9740 | 0.9872 |
|
64 |
+
| 0.0139 | 8.0 | 6512 | 0.0879 | 0.9743 | 0.9747 | 0.9745 | 0.9876 |
|
65 |
+
| 0.007 | 9.0 | 7326 | 0.0978 | 0.9740 | 0.9734 | 0.9737 | 0.9870 |
|
66 |
+
| 0.0076 | 10.0 | 8140 | 0.1015 | 0.9723 | 0.9726 | 0.9725 | 0.9860 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.27.4
|
72 |
+
- Pytorch 1.13.1+cu116
|
73 |
+
- Datasets 2.11.0
|
74 |
+
- Tokenizers 0.13.2
|