cassador commited on
Commit
58b5017
1 Parent(s): 3b537a3

Upload 10 files

Browse files
README.md ADDED
@@ -0,0 +1,673 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:10330
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: indobenchmark/indobert-base-p2
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: Gedung itu sendiri telah terbakar sekitar pukul 20.00 WITA, dan
26
+ api menyala sampai pukul 09.00 keesokan harinya.
27
+ sentences:
28
+ - Antartika merupakan wilayah yang subur.
29
+ - Kedokteran Islam tidak mempengaruhi kedokteran di Italia.
30
+ - Gedung itu habis terbakar.
31
+ - source_sentence: Singapura terpilih sebagai tuan rumah SEA Games XXVIII 2015 pada
32
+ penyelenggaraan SEA Games XXVI di Palembang dan Jakarta, Indonesia. Singapura
33
+ seharusnya menjadi tuan rumah SEA Games XXIV 2007, tetapi negara-kota tersebut
34
+ menolak untuk membangun berbagai infrastruktur olahraga untuk menyambut event
35
+ ini. Mereka sekali lagi terpilih sebagai tuan tumah SEA Games XXVII 2013, tetapi
36
+ juga menolak. Terakhir kali Singapura menjadi tuan rumah adalah 22 tahun yang
37
+ lalu.
38
+ sentences:
39
+ - Dalam waktu singkat jalan raya antara Pekanbaru sampai batas Sumatera Barat siap
40
+ dikerjakan.
41
+ - Denpasar pernah menjadi tuan rumah SEA Games.
42
+ - Di babak kedua, kedua tim mencetak satu gol.
43
+ - source_sentence: Di akhir acara, keenam anggota JKT48 diminta menyanyikan "Heavy
44
+ Rotation" versi bahasa Indonesia secara acapella.
45
+ sentences:
46
+ - Grup musik ini memiliki seorang gitaris.
47
+ - Pria tidak boleh menjadi anggota JKT48.
48
+ - Fisika dipahami sebagai aturan yang mengatur sifat materi, bentuk dan perubahan
49
+ mereka.
50
+ - source_sentence: Komunisme atau Marxisme adalah ideologi dasar yang umumnya digunakan
51
+ oleh partai komunis di seluruh dunia.
52
+ sentences:
53
+ - Bomba Tzur merupakan salah satu pemainnya.
54
+ - ITV menayangkan "Who wants to be a millionare" versi asli.
55
+ - Seluruh partai komunis menganut paham komunisme.
56
+ - source_sentence: Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.
57
+ sentences:
58
+ - RNA tidak dapat mengatalis reaksi kimia.
59
+ - Gereja Baptis biasanya cenderung membentuk kelompok sendiri.
60
+ - Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.
61
+ pipeline_tag: sentence-similarity
62
+ model-index:
63
+ - name: SentenceTransformer based on indobenchmark/indobert-base-p2
64
+ results:
65
+ - task:
66
+ type: semantic-similarity
67
+ name: Semantic Similarity
68
+ dataset:
69
+ name: sts dev
70
+ type: sts-dev
71
+ metrics:
72
+ - type: pearson_cosine
73
+ value: -0.0979039836743928
74
+ name: Pearson Cosine
75
+ - type: spearman_cosine
76
+ value: -0.10370853946172742
77
+ name: Spearman Cosine
78
+ - type: pearson_manhattan
79
+ value: -0.0986716229567464
80
+ name: Pearson Manhattan
81
+ - type: spearman_manhattan
82
+ value: -0.10051590980192249
83
+ name: Spearman Manhattan
84
+ - type: pearson_euclidean
85
+ value: -0.09806801008727767
86
+ name: Pearson Euclidean
87
+ - type: spearman_euclidean
88
+ value: -0.09978077307233649
89
+ name: Spearman Euclidean
90
+ - type: pearson_dot
91
+ value: -0.08215757856369725
92
+ name: Pearson Dot
93
+ - type: spearman_dot
94
+ value: -0.08205505573726227
95
+ name: Spearman Dot
96
+ - type: pearson_max
97
+ value: -0.08215757856369725
98
+ name: Pearson Max
99
+ - type: spearman_max
100
+ value: -0.08205505573726227
101
+ name: Spearman Max
102
+ - type: pearson_cosine
103
+ value: -0.02784985879772803
104
+ name: Pearson Cosine
105
+ - type: spearman_cosine
106
+ value: -0.03497736614462515
107
+ name: Spearman Cosine
108
+ - type: pearson_manhattan
109
+ value: -0.03551617173397621
110
+ name: Pearson Manhattan
111
+ - type: spearman_manhattan
112
+ value: -0.03865758617690966
113
+ name: Spearman Manhattan
114
+ - type: pearson_euclidean
115
+ value: -0.0355939001168591
116
+ name: Pearson Euclidean
117
+ - type: spearman_euclidean
118
+ value: -0.03886934284409788
119
+ name: Spearman Euclidean
120
+ - type: pearson_dot
121
+ value: -0.009209251203106355
122
+ name: Pearson Dot
123
+ - type: spearman_dot
124
+ value: -0.006641745341724743
125
+ name: Spearman Dot
126
+ - type: pearson_max
127
+ value: -0.009209251203106355
128
+ name: Pearson Max
129
+ - type: spearman_max
130
+ value: -0.006641745341724743
131
+ name: Spearman Max
132
+ ---
133
+
134
+ # SentenceTransformer based on indobenchmark/indobert-base-p2
135
+
136
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** Sentence Transformer
142
+ - **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
143
+ - **Maximum Sequence Length:** 200 tokens
144
+ - **Output Dimensionality:** 768 tokens
145
+ - **Similarity Function:** Cosine Similarity
146
+ <!-- - **Training Dataset:** Unknown -->
147
+ <!-- - **Language:** Unknown -->
148
+ <!-- - **License:** Unknown -->
149
+
150
+ ### Model Sources
151
+
152
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
153
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
154
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
155
+
156
+ ### Full Model Architecture
157
+
158
+ ```
159
+ SentenceTransformer(
160
+ (0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: BertModel
161
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
162
+ )
163
+ ```
164
+
165
+ ## Usage
166
+
167
+ ### Direct Usage (Sentence Transformers)
168
+
169
+ First install the Sentence Transformers library:
170
+
171
+ ```bash
172
+ pip install -U sentence-transformers
173
+ ```
174
+
175
+ Then you can load this model and run inference.
176
+ ```python
177
+ from sentence_transformers import SentenceTransformer
178
+
179
+ # Download from the 🤗 Hub
180
+ model = SentenceTransformer("sentence_transformers_model_id")
181
+ # Run inference
182
+ sentences = [
183
+ 'Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.',
184
+ 'Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.',
185
+ 'Gereja Baptis biasanya cenderung membentuk kelompok sendiri.',
186
+ ]
187
+ embeddings = model.encode(sentences)
188
+ print(embeddings.shape)
189
+ # [3, 768]
190
+
191
+ # Get the similarity scores for the embeddings
192
+ similarities = model.similarity(embeddings, embeddings)
193
+ print(similarities.shape)
194
+ # [3, 3]
195
+ ```
196
+
197
+ <!--
198
+ ### Direct Usage (Transformers)
199
+
200
+ <details><summary>Click to see the direct usage in Transformers</summary>
201
+
202
+ </details>
203
+ -->
204
+
205
+ <!--
206
+ ### Downstream Usage (Sentence Transformers)
207
+
208
+ You can finetune this model on your own dataset.
209
+
210
+ <details><summary>Click to expand</summary>
211
+
212
+ </details>
213
+ -->
214
+
215
+ <!--
216
+ ### Out-of-Scope Use
217
+
218
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
219
+ -->
220
+
221
+ ## Evaluation
222
+
223
+ ### Metrics
224
+
225
+ #### Semantic Similarity
226
+ * Dataset: `sts-dev`
227
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
228
+
229
+ | Metric | Value |
230
+ |:-------------------|:------------|
231
+ | pearson_cosine | -0.0979 |
232
+ | spearman_cosine | -0.1037 |
233
+ | pearson_manhattan | -0.0987 |
234
+ | spearman_manhattan | -0.1005 |
235
+ | pearson_euclidean | -0.0981 |
236
+ | spearman_euclidean | -0.0998 |
237
+ | pearson_dot | -0.0822 |
238
+ | spearman_dot | -0.0821 |
239
+ | pearson_max | -0.0822 |
240
+ | **spearman_max** | **-0.0821** |
241
+
242
+ #### Semantic Similarity
243
+ * Dataset: `sts-dev`
244
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
245
+
246
+ | Metric | Value |
247
+ |:-------------------|:------------|
248
+ | pearson_cosine | -0.0278 |
249
+ | spearman_cosine | -0.035 |
250
+ | pearson_manhattan | -0.0355 |
251
+ | spearman_manhattan | -0.0387 |
252
+ | pearson_euclidean | -0.0356 |
253
+ | spearman_euclidean | -0.0389 |
254
+ | pearson_dot | -0.0092 |
255
+ | spearman_dot | -0.0066 |
256
+ | pearson_max | -0.0092 |
257
+ | **spearman_max** | **-0.0066** |
258
+
259
+ <!--
260
+ ## Bias, Risks and Limitations
261
+
262
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
263
+ -->
264
+
265
+ <!--
266
+ ### Recommendations
267
+
268
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
269
+ -->
270
+
271
+ ## Training Details
272
+
273
+ ### Training Dataset
274
+
275
+ #### Unnamed Dataset
276
+
277
+
278
+ * Size: 10,330 training samples
279
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
280
+ * Approximate statistics based on the first 1000 samples:
281
+ | | sentence_0 | sentence_1 | label |
282
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
283
+ | type | string | string | int |
284
+ | details | <ul><li>min: 10 tokens</li><li>mean: 30.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>0: ~33.50%</li><li>1: ~32.70%</li><li>2: ~33.80%</li></ul> |
285
+ * Samples:
286
+ | sentence_0 | sentence_1 | label |
287
+ |:-----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------|
288
+ | <code>Ini adalah coup de grâce dan dorongan yang dibutuhkan oleh para pendatang untuk mendapatkan kemerdekaan mereka.</code> | <code>Pendatang tidak mendapatkan kemerdekaan.</code> | <code>2</code> |
289
+ | <code>Dua bayi almarhum Raja, Diana dan Suharna, diculik.</code> | <code>Jumlah bayi raja yang diculik sudah mencapai 2 bayi.</code> | <code>1</code> |
290
+ | <code>Sebuah penelitian menunjukkan bahwa mengkonsumsi makanan yang tinggi kadar gulanya bisa meningkatkan rasa haus.</code> | <code>Tidak ada penelitian yang bertopik makanan yang kadar gulanya tinggi.</code> | <code>2</code> |
291
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
292
+ ```json
293
+ {
294
+ "scale": 20.0,
295
+ "similarity_fct": "cos_sim"
296
+ }
297
+ ```
298
+
299
+ ### Training Hyperparameters
300
+ #### Non-Default Hyperparameters
301
+
302
+ - `eval_strategy`: steps
303
+ - `per_device_train_batch_size`: 4
304
+ - `per_device_eval_batch_size`: 4
305
+ - `num_train_epochs`: 20
306
+ - `multi_dataset_batch_sampler`: round_robin
307
+
308
+ #### All Hyperparameters
309
+ <details><summary>Click to expand</summary>
310
+
311
+ - `overwrite_output_dir`: False
312
+ - `do_predict`: False
313
+ - `eval_strategy`: steps
314
+ - `prediction_loss_only`: True
315
+ - `per_device_train_batch_size`: 4
316
+ - `per_device_eval_batch_size`: 4
317
+ - `per_gpu_train_batch_size`: None
318
+ - `per_gpu_eval_batch_size`: None
319
+ - `gradient_accumulation_steps`: 1
320
+ - `eval_accumulation_steps`: None
321
+ - `learning_rate`: 5e-05
322
+ - `weight_decay`: 0.0
323
+ - `adam_beta1`: 0.9
324
+ - `adam_beta2`: 0.999
325
+ - `adam_epsilon`: 1e-08
326
+ - `max_grad_norm`: 1
327
+ - `num_train_epochs`: 20
328
+ - `max_steps`: -1
329
+ - `lr_scheduler_type`: linear
330
+ - `lr_scheduler_kwargs`: {}
331
+ - `warmup_ratio`: 0.0
332
+ - `warmup_steps`: 0
333
+ - `log_level`: passive
334
+ - `log_level_replica`: warning
335
+ - `log_on_each_node`: True
336
+ - `logging_nan_inf_filter`: True
337
+ - `save_safetensors`: True
338
+ - `save_on_each_node`: False
339
+ - `save_only_model`: False
340
+ - `restore_callback_states_from_checkpoint`: False
341
+ - `no_cuda`: False
342
+ - `use_cpu`: False
343
+ - `use_mps_device`: False
344
+ - `seed`: 42
345
+ - `data_seed`: None
346
+ - `jit_mode_eval`: False
347
+ - `use_ipex`: False
348
+ - `bf16`: False
349
+ - `fp16`: False
350
+ - `fp16_opt_level`: O1
351
+ - `half_precision_backend`: auto
352
+ - `bf16_full_eval`: False
353
+ - `fp16_full_eval`: False
354
+ - `tf32`: None
355
+ - `local_rank`: 0
356
+ - `ddp_backend`: None
357
+ - `tpu_num_cores`: None
358
+ - `tpu_metrics_debug`: False
359
+ - `debug`: []
360
+ - `dataloader_drop_last`: False
361
+ - `dataloader_num_workers`: 0
362
+ - `dataloader_prefetch_factor`: None
363
+ - `past_index`: -1
364
+ - `disable_tqdm`: False
365
+ - `remove_unused_columns`: True
366
+ - `label_names`: None
367
+ - `load_best_model_at_end`: False
368
+ - `ignore_data_skip`: False
369
+ - `fsdp`: []
370
+ - `fsdp_min_num_params`: 0
371
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
372
+ - `fsdp_transformer_layer_cls_to_wrap`: None
373
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
374
+ - `deepspeed`: None
375
+ - `label_smoothing_factor`: 0.0
376
+ - `optim`: adamw_torch
377
+ - `optim_args`: None
378
+ - `adafactor`: False
379
+ - `group_by_length`: False
380
+ - `length_column_name`: length
381
+ - `ddp_find_unused_parameters`: None
382
+ - `ddp_bucket_cap_mb`: None
383
+ - `ddp_broadcast_buffers`: False
384
+ - `dataloader_pin_memory`: True
385
+ - `dataloader_persistent_workers`: False
386
+ - `skip_memory_metrics`: True
387
+ - `use_legacy_prediction_loop`: False
388
+ - `push_to_hub`: False
389
+ - `resume_from_checkpoint`: None
390
+ - `hub_model_id`: None
391
+ - `hub_strategy`: every_save
392
+ - `hub_private_repo`: False
393
+ - `hub_always_push`: False
394
+ - `gradient_checkpointing`: False
395
+ - `gradient_checkpointing_kwargs`: None
396
+ - `include_inputs_for_metrics`: False
397
+ - `eval_do_concat_batches`: True
398
+ - `fp16_backend`: auto
399
+ - `push_to_hub_model_id`: None
400
+ - `push_to_hub_organization`: None
401
+ - `mp_parameters`:
402
+ - `auto_find_batch_size`: False
403
+ - `full_determinism`: False
404
+ - `torchdynamo`: None
405
+ - `ray_scope`: last
406
+ - `ddp_timeout`: 1800
407
+ - `torch_compile`: False
408
+ - `torch_compile_backend`: None
409
+ - `torch_compile_mode`: None
410
+ - `dispatch_batches`: None
411
+ - `split_batches`: None
412
+ - `include_tokens_per_second`: False
413
+ - `include_num_input_tokens_seen`: False
414
+ - `neftune_noise_alpha`: None
415
+ - `optim_target_modules`: None
416
+ - `batch_eval_metrics`: False
417
+ - `batch_sampler`: batch_sampler
418
+ - `multi_dataset_batch_sampler`: round_robin
419
+
420
+ </details>
421
+
422
+ ### Training Logs
423
+ <details><summary>Click to expand</summary>
424
+
425
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
426
+ |:-------:|:-----:|:-------------:|:--------------------:|
427
+ | 0.0998 | 129 | - | -0.0821 |
428
+ | 0.0999 | 258 | - | -0.0541 |
429
+ | 0.1936 | 500 | 0.0322 | - |
430
+ | 0.1998 | 516 | - | -0.0474 |
431
+ | 0.2997 | 774 | - | -0.0369 |
432
+ | 0.3871 | 1000 | 0.0157 | - |
433
+ | 0.3995 | 1032 | - | -0.0371 |
434
+ | 0.4994 | 1290 | - | -0.0388 |
435
+ | 0.5807 | 1500 | 0.0109 | - |
436
+ | 0.5993 | 1548 | - | -0.0284 |
437
+ | 0.6992 | 1806 | - | -0.0293 |
438
+ | 0.7743 | 2000 | 0.0112 | - |
439
+ | 0.7991 | 2064 | - | -0.0176 |
440
+ | 0.8990 | 2322 | - | -0.0290 |
441
+ | 0.9679 | 2500 | 0.0104 | - |
442
+ | 0.9988 | 2580 | - | -0.0128 |
443
+ | 1.0 | 2583 | - | -0.0123 |
444
+ | 1.0987 | 2838 | - | -0.0200 |
445
+ | 1.1614 | 3000 | 0.0091 | - |
446
+ | 1.1986 | 3096 | - | -0.0202 |
447
+ | 1.2985 | 3354 | - | -0.0204 |
448
+ | 1.3550 | 3500 | 0.0052 | - |
449
+ | 1.3984 | 3612 | - | -0.0231 |
450
+ | 1.4983 | 3870 | - | -0.0312 |
451
+ | 1.5486 | 4000 | 0.0017 | - |
452
+ | 1.5981 | 4128 | - | -0.0277 |
453
+ | 1.6980 | 4386 | - | -0.0366 |
454
+ | 1.7422 | 4500 | 0.0054 | - |
455
+ | 1.7979 | 4644 | - | -0.0192 |
456
+ | 1.8978 | 4902 | - | -0.0224 |
457
+ | 1.9357 | 5000 | 0.0048 | - |
458
+ | 1.9977 | 5160 | - | -0.0240 |
459
+ | 2.0 | 5166 | - | -0.0248 |
460
+ | 2.0976 | 5418 | - | -0.0374 |
461
+ | 2.1293 | 5500 | 0.0045 | - |
462
+ | 2.1974 | 5676 | - | -0.0215 |
463
+ | 2.2973 | 5934 | - | -0.0329 |
464
+ | 2.3229 | 6000 | 0.0047 | - |
465
+ | 2.3972 | 6192 | - | -0.0284 |
466
+ | 2.4971 | 6450 | - | -0.0370 |
467
+ | 2.5165 | 6500 | 0.0037 | - |
468
+ | 2.5970 | 6708 | - | -0.0390 |
469
+ | 2.6969 | 6966 | - | -0.0681 |
470
+ | 2.7100 | 7000 | 0.0128 | - |
471
+ | 2.7967 | 7224 | - | -0.0343 |
472
+ | 2.8966 | 7482 | - | -0.0413 |
473
+ | 2.9036 | 7500 | 0.0055 | - |
474
+ | 2.9965 | 7740 | - | -0.0416 |
475
+ | 3.0 | 7749 | - | -0.0373 |
476
+ | 3.0964 | 7998 | - | -0.0630 |
477
+ | 3.0972 | 8000 | 0.0016 | - |
478
+ | 3.1963 | 8256 | - | -0.0401 |
479
+ | 3.2907 | 8500 | 0.0018 | - |
480
+ | 3.2962 | 8514 | - | -0.0303 |
481
+ | 3.3961 | 8772 | - | -0.0484 |
482
+ | 3.4843 | 9000 | 0.0017 | - |
483
+ | 3.4959 | 9030 | - | -0.0619 |
484
+ | 3.5958 | 9288 | - | -0.0411 |
485
+ | 3.6779 | 9500 | 0.007 | - |
486
+ | 3.6957 | 9546 | - | -0.0408 |
487
+ | 3.7956 | 9804 | - | -0.0368 |
488
+ | 3.8715 | 10000 | 0.0029 | - |
489
+ | 3.8955 | 10062 | - | -0.0429 |
490
+ | 3.9954 | 10320 | - | -0.0526 |
491
+ | 4.0 | 10332 | - | -0.0494 |
492
+ | 4.0650 | 10500 | 0.0004 | - |
493
+ | 4.0952 | 10578 | - | -0.0385 |
494
+ | 4.1951 | 10836 | - | -0.0467 |
495
+ | 4.2586 | 11000 | 0.0004 | - |
496
+ | 4.2950 | 11094 | - | -0.0500 |
497
+ | 4.3949 | 11352 | - | -0.0458 |
498
+ | 4.4522 | 11500 | 0.0011 | - |
499
+ | 4.4948 | 11610 | - | -0.0389 |
500
+ | 4.5947 | 11868 | - | -0.0401 |
501
+ | 4.6458 | 12000 | 0.0046 | - |
502
+ | 4.6945 | 12126 | - | -0.0370 |
503
+ | 4.7944 | 12384 | - | -0.0495 |
504
+ | 4.8393 | 12500 | 0.0104 | - |
505
+ | 4.8943 | 12642 | - | -0.0504 |
506
+ | 4.9942 | 12900 | - | -0.0377 |
507
+ | 5.0 | 12915 | - | -0.0379 |
508
+ | 5.0329 | 13000 | 0.0005 | - |
509
+ | 5.0941 | 13158 | - | -0.0617 |
510
+ | 5.1940 | 13416 | - | -0.0354 |
511
+ | 5.2265 | 13500 | 0.0006 | - |
512
+ | 5.2938 | 13674 | - | -0.0514 |
513
+ | 5.3937 | 13932 | - | -0.0615 |
514
+ | 5.4201 | 14000 | 0.0014 | - |
515
+ | 5.4936 | 14190 | - | -0.0574 |
516
+ | 5.5935 | 14448 | - | -0.0503 |
517
+ | 5.6136 | 14500 | 0.0025 | - |
518
+ | 5.6934 | 14706 | - | -0.0512 |
519
+ | 5.7933 | 14964 | - | -0.0316 |
520
+ | 5.8072 | 15000 | 0.0029 | - |
521
+ | 5.8931 | 15222 | - | -0.0475 |
522
+ | 5.9930 | 15480 | - | -0.0429 |
523
+ | 6.0 | 15498 | - | -0.0377 |
524
+ | 6.0008 | 15500 | 0.0003 | - |
525
+ | 6.0929 | 15738 | - | -0.0486 |
526
+ | 6.1928 | 15996 | - | -0.0512 |
527
+ | 6.1943 | 16000 | 0.0002 | - |
528
+ | 6.2927 | 16254 | - | -0.0383 |
529
+ | 6.3879 | 16500 | 0.0017 | - |
530
+ | 6.3926 | 16512 | - | -0.0460 |
531
+ | 6.4925 | 16770 | - | -0.0439 |
532
+ | 6.5815 | 17000 | 0.0046 | - |
533
+ | 6.5923 | 17028 | - | -0.0378 |
534
+ | 6.6922 | 17286 | - | -0.0289 |
535
+ | 6.7751 | 17500 | 0.0081 | - |
536
+ | 6.7921 | 17544 | - | -0.0415 |
537
+ | 6.8920 | 17802 | - | -0.0451 |
538
+ | 6.9686 | 18000 | 0.0021 | - |
539
+ | 6.9919 | 18060 | - | -0.0386 |
540
+ | 7.0 | 18081 | - | -0.0390 |
541
+ | 7.0918 | 18318 | - | -0.0460 |
542
+ | 7.1622 | 18500 | 0.0001 | - |
543
+ | 7.1916 | 18576 | - | -0.0510 |
544
+ | 7.2915 | 18834 | - | -0.0566 |
545
+ | 7.3558 | 19000 | 0.0009 | - |
546
+ | 7.3914 | 19092 | - | -0.0479 |
547
+ | 7.4913 | 19350 | - | -0.0456 |
548
+ | 7.5494 | 19500 | 0.0019 | - |
549
+ | 7.5912 | 19608 | - | -0.0371 |
550
+ | 7.6911 | 19866 | - | -0.0184 |
551
+ | 7.7429 | 20000 | 0.003 | - |
552
+ | 7.7909 | 20124 | - | -0.0312 |
553
+ | 7.8908 | 20382 | - | -0.0307 |
554
+ | 7.9365 | 20500 | 0.0008 | - |
555
+ | 7.9907 | 20640 | - | -0.0291 |
556
+ | 8.0 | 20664 | - | -0.0298 |
557
+ | 8.0906 | 20898 | - | -0.0452 |
558
+ | 8.1301 | 21000 | 0.0001 | - |
559
+ | 8.1905 | 21156 | - | -0.0405 |
560
+ | 8.2904 | 21414 | - | -0.0417 |
561
+ | 8.3237 | 21500 | 0.0007 | - |
562
+ | 8.3902 | 21672 | - | -0.0430 |
563
+ | 8.4901 | 21930 | - | -0.0487 |
564
+ | 8.5172 | 22000 | 0.0 | - |
565
+ | 8.5900 | 22188 | - | -0.0471 |
566
+ | 8.6899 | 22446 | - | -0.0361 |
567
+ | 8.7108 | 22500 | 0.0037 | - |
568
+ | 8.7898 | 22704 | - | -0.0443 |
569
+ | 8.8897 | 22962 | - | -0.0404 |
570
+ | 8.9044 | 23000 | 0.0009 | - |
571
+ | 8.9895 | 23220 | - | -0.0421 |
572
+ | 9.0 | 23247 | - | -0.0425 |
573
+ | 9.0894 | 23478 | - | -0.0451 |
574
+ | 9.0979 | 23500 | 0.0001 | - |
575
+ | 9.1893 | 23736 | - | -0.0458 |
576
+ | 9.2892 | 23994 | - | -0.0479 |
577
+ | 9.2915 | 24000 | 0.0 | - |
578
+ | 9.3891 | 24252 | - | -0.0400 |
579
+ | 9.4851 | 24500 | 0.0014 | - |
580
+ | 9.4890 | 24510 | - | -0.0374 |
581
+ | 9.5889 | 24768 | - | -0.0454 |
582
+ | 9.6787 | 25000 | 0.0075 | - |
583
+ | 9.6887 | 25026 | - | -0.0230 |
584
+ | 9.7886 | 25284 | - | -0.0345 |
585
+ | 9.8722 | 25500 | 0.0007 | - |
586
+ | 9.8885 | 25542 | - | -0.0301 |
587
+ | 9.9884 | 25800 | - | -0.0363 |
588
+ | 10.0 | 25830 | - | -0.0375 |
589
+ | 10.0658 | 26000 | 0.0001 | - |
590
+ | 10.0883 | 26058 | - | -0.0381 |
591
+ | 10.1882 | 26316 | - | -0.0386 |
592
+ | 10.2594 | 26500 | 0.0 | - |
593
+ | 10.2880 | 26574 | - | -0.0390 |
594
+ | 10.3879 | 26832 | - | -0.0366 |
595
+ | 10.4530 | 27000 | 0.0007 | - |
596
+ | 10.4878 | 27090 | - | -0.0464 |
597
+ | 10.5877 | 27348 | - | -0.0509 |
598
+ | 10.6465 | 27500 | 0.0021 | - |
599
+ | 10.6876 | 27606 | - | -0.0292 |
600
+ | 10.7875 | 27864 | - | -0.0514 |
601
+ | 10.8401 | 28000 | 0.0017 | - |
602
+ | 10.8873 | 28122 | - | -0.0485 |
603
+ | 10.9872 | 28380 | - | -0.0471 |
604
+ | 11.0 | 28413 | - | -0.0468 |
605
+ | 11.0337 | 28500 | 0.0 | - |
606
+ | 11.0871 | 28638 | - | -0.0460 |
607
+ | 11.1870 | 28896 | - | -0.0450 |
608
+ | 11.2273 | 29000 | 0.0 | - |
609
+ | 11.2869 | 29154 | - | -0.0457 |
610
+ | 11.3868 | 29412 | - | -0.0450 |
611
+ | 11.4208 | 29500 | 0.0008 | - |
612
+ | 11.4866 | 29670 | - | -0.0440 |
613
+ | 11.5865 | 29928 | - | -0.0384 |
614
+ | 11.6144 | 30000 | 0.0028 | - |
615
+ | 11.6864 | 30186 | - | -0.0066 |
616
+
617
+ </details>
618
+
619
+ ### Framework Versions
620
+ - Python: 3.10.12
621
+ - Sentence Transformers: 3.0.1
622
+ - Transformers: 4.41.2
623
+ - PyTorch: 2.3.0+cu121
624
+ - Accelerate: 0.31.0
625
+ - Datasets: 2.19.2
626
+ - Tokenizers: 0.19.1
627
+
628
+ ## Citation
629
+
630
+ ### BibTeX
631
+
632
+ #### Sentence Transformers
633
+ ```bibtex
634
+ @inproceedings{reimers-2019-sentence-bert,
635
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
636
+ author = "Reimers, Nils and Gurevych, Iryna",
637
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
638
+ month = "11",
639
+ year = "2019",
640
+ publisher = "Association for Computational Linguistics",
641
+ url = "https://arxiv.org/abs/1908.10084",
642
+ }
643
+ ```
644
+
645
+ #### MultipleNegativesRankingLoss
646
+ ```bibtex
647
+ @misc{henderson2017efficient,
648
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
649
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
650
+ year={2017},
651
+ eprint={1705.00652},
652
+ archivePrefix={arXiv},
653
+ primaryClass={cs.CL}
654
+ }
655
+ ```
656
+
657
+ <!--
658
+ ## Glossary
659
+
660
+ *Clearly define terms in order to be accessible across audiences.*
661
+ -->
662
+
663
+ <!--
664
+ ## Model Card Authors
665
+
666
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
667
+ -->
668
+
669
+ <!--
670
+ ## Model Card Contact
671
+
672
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
673
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "indobenchmark/indobert-base-p2",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.41.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acf754ba15509b16bf82adb2df4c9d2b4dad3dac0a16c8b60f9ccb232134faca
3
+ size 497850982
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 200,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 200,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff