Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,637 @@
|
|
1 |
-
|
|
|
|
|
2 |
tags:
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:10330
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: indobenchmark/indobert-base-p2
|
12 |
+
datasets: []
|
13 |
+
metrics:
|
14 |
+
- pearson_cosine
|
15 |
+
- spearman_cosine
|
16 |
+
- pearson_manhattan
|
17 |
+
- spearman_manhattan
|
18 |
+
- pearson_euclidean
|
19 |
+
- spearman_euclidean
|
20 |
+
- pearson_dot
|
21 |
+
- spearman_dot
|
22 |
+
- pearson_max
|
23 |
+
- spearman_max
|
24 |
+
|
25 |
+
pipeline_tag: sentence-similarity
|
26 |
+
model-index:
|
27 |
+
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
|
28 |
+
results:
|
29 |
+
- task:
|
30 |
+
type: semantic-similarity
|
31 |
+
name: Semantic Similarity
|
32 |
+
dataset:
|
33 |
+
name: sts dev
|
34 |
+
type: sts-dev
|
35 |
+
metrics:
|
36 |
+
- type: pearson_cosine
|
37 |
+
value: -0.0979039836743928
|
38 |
+
name: Pearson Cosine
|
39 |
+
- type: spearman_cosine
|
40 |
+
value: -0.10370853946172742
|
41 |
+
name: Spearman Cosine
|
42 |
+
- type: pearson_manhattan
|
43 |
+
value: -0.0986716229567464
|
44 |
+
name: Pearson Manhattan
|
45 |
+
- type: spearman_manhattan
|
46 |
+
value: -0.10051590980192249
|
47 |
+
name: Spearman Manhattan
|
48 |
+
- type: pearson_euclidean
|
49 |
+
value: -0.09806801008727767
|
50 |
+
name: Pearson Euclidean
|
51 |
+
- type: spearman_euclidean
|
52 |
+
value: -0.09978077307233649
|
53 |
+
name: Spearman Euclidean
|
54 |
+
- type: pearson_dot
|
55 |
+
value: -0.08215757856369725
|
56 |
+
name: Pearson Dot
|
57 |
+
- type: spearman_dot
|
58 |
+
value: -0.08205505573726227
|
59 |
+
name: Spearman Dot
|
60 |
+
- type: pearson_max
|
61 |
+
value: -0.08215757856369725
|
62 |
+
name: Pearson Max
|
63 |
+
- type: spearman_max
|
64 |
+
value: -0.08205505573726227
|
65 |
+
name: Spearman Max
|
66 |
+
- type: pearson_cosine
|
67 |
+
value: -0.02784985879772803
|
68 |
+
name: Pearson Cosine
|
69 |
+
- type: spearman_cosine
|
70 |
+
value: -0.03497736614462515
|
71 |
+
name: Spearman Cosine
|
72 |
+
- type: pearson_manhattan
|
73 |
+
value: -0.03551617173397621
|
74 |
+
name: Pearson Manhattan
|
75 |
+
- type: spearman_manhattan
|
76 |
+
value: -0.03865758617690966
|
77 |
+
name: Spearman Manhattan
|
78 |
+
- type: pearson_euclidean
|
79 |
+
value: -0.0355939001168591
|
80 |
+
name: Pearson Euclidean
|
81 |
+
- type: spearman_euclidean
|
82 |
+
value: -0.03886934284409788
|
83 |
+
name: Spearman Euclidean
|
84 |
+
- type: pearson_dot
|
85 |
+
value: -0.009209251203106355
|
86 |
+
name: Pearson Dot
|
87 |
+
- type: spearman_dot
|
88 |
+
value: -0.006641745341724743
|
89 |
+
name: Spearman Dot
|
90 |
+
- type: pearson_max
|
91 |
+
value: -0.009209251203106355
|
92 |
+
name: Pearson Max
|
93 |
+
- type: spearman_max
|
94 |
+
value: -0.006641745341724743
|
95 |
+
name: Spearman Max
|
96 |
+
---
|
97 |
+
|
98 |
+
# SentenceTransformer based on indobenchmark/indobert-base-p2
|
99 |
+
|
100 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
101 |
+
|
102 |
+
## Model Details
|
103 |
+
|
104 |
+
### Model Description
|
105 |
+
- **Model Type:** Sentence Transformer
|
106 |
+
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
|
107 |
+
- **Maximum Sequence Length:** 200 tokens
|
108 |
+
- **Output Dimensionality:** 768 tokens
|
109 |
+
- **Similarity Function:** Cosine Similarity
|
110 |
+
<!-- - **Training Dataset:** Unknown -->
|
111 |
+
<!-- - **Language:** Unknown -->
|
112 |
+
<!-- - **License:** Unknown -->
|
113 |
+
|
114 |
+
### Model Sources
|
115 |
+
|
116 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
117 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
118 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
119 |
+
|
120 |
+
### Full Model Architecture
|
121 |
+
|
122 |
+
```
|
123 |
+
SentenceTransformer(
|
124 |
+
(0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: BertModel
|
125 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
126 |
+
)
|
127 |
+
```
|
128 |
+
|
129 |
+
## Usage
|
130 |
+
|
131 |
+
### Direct Usage (Sentence Transformers)
|
132 |
+
|
133 |
+
First install the Sentence Transformers library:
|
134 |
+
|
135 |
+
```bash
|
136 |
+
pip install -U sentence-transformers
|
137 |
+
```
|
138 |
+
|
139 |
+
Then you can load this model and run inference.
|
140 |
+
```python
|
141 |
+
from sentence_transformers import SentenceTransformer
|
142 |
+
|
143 |
+
# Download from the 🤗 Hub
|
144 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
145 |
+
# Run inference
|
146 |
+
sentences = [
|
147 |
+
'Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.',
|
148 |
+
'Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.',
|
149 |
+
'Gereja Baptis biasanya cenderung membentuk kelompok sendiri.',
|
150 |
+
]
|
151 |
+
embeddings = model.encode(sentences)
|
152 |
+
print(embeddings.shape)
|
153 |
+
# [3, 768]
|
154 |
+
|
155 |
+
# Get the similarity scores for the embeddings
|
156 |
+
similarities = model.similarity(embeddings, embeddings)
|
157 |
+
print(similarities.shape)
|
158 |
+
# [3, 3]
|
159 |
+
```
|
160 |
+
|
161 |
+
<!--
|
162 |
+
### Direct Usage (Transformers)
|
163 |
+
|
164 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
165 |
+
|
166 |
+
</details>
|
167 |
+
-->
|
168 |
+
|
169 |
+
<!--
|
170 |
+
### Downstream Usage (Sentence Transformers)
|
171 |
+
|
172 |
+
You can finetune this model on your own dataset.
|
173 |
+
|
174 |
+
<details><summary>Click to expand</summary>
|
175 |
+
|
176 |
+
</details>
|
177 |
+
-->
|
178 |
+
|
179 |
+
<!--
|
180 |
+
### Out-of-Scope Use
|
181 |
+
|
182 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
183 |
+
-->
|
184 |
+
|
185 |
+
## Evaluation
|
186 |
+
|
187 |
+
### Metrics
|
188 |
+
|
189 |
+
#### Semantic Similarity
|
190 |
+
* Dataset: `sts-dev`
|
191 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
192 |
+
|
193 |
+
| Metric | Value |
|
194 |
+
|:-------------------|:------------|
|
195 |
+
| pearson_cosine | -0.0979 |
|
196 |
+
| spearman_cosine | -0.1037 |
|
197 |
+
| pearson_manhattan | -0.0987 |
|
198 |
+
| spearman_manhattan | -0.1005 |
|
199 |
+
| pearson_euclidean | -0.0981 |
|
200 |
+
| spearman_euclidean | -0.0998 |
|
201 |
+
| pearson_dot | -0.0822 |
|
202 |
+
| spearman_dot | -0.0821 |
|
203 |
+
| pearson_max | -0.0822 |
|
204 |
+
| **spearman_max** | **-0.0821** |
|
205 |
+
|
206 |
+
#### Semantic Similarity
|
207 |
+
* Dataset: `sts-dev`
|
208 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
209 |
+
|
210 |
+
| Metric | Value |
|
211 |
+
|:-------------------|:------------|
|
212 |
+
| pearson_cosine | -0.0278 |
|
213 |
+
| spearman_cosine | -0.035 |
|
214 |
+
| pearson_manhattan | -0.0355 |
|
215 |
+
| spearman_manhattan | -0.0387 |
|
216 |
+
| pearson_euclidean | -0.0356 |
|
217 |
+
| spearman_euclidean | -0.0389 |
|
218 |
+
| pearson_dot | -0.0092 |
|
219 |
+
| spearman_dot | -0.0066 |
|
220 |
+
| pearson_max | -0.0092 |
|
221 |
+
| **spearman_max** | **-0.0066** |
|
222 |
+
|
223 |
+
<!--
|
224 |
+
## Bias, Risks and Limitations
|
225 |
+
|
226 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
227 |
+
-->
|
228 |
+
|
229 |
+
<!--
|
230 |
+
### Recommendations
|
231 |
+
|
232 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
233 |
+
-->
|
234 |
+
|
235 |
+
## Training Details
|
236 |
+
|
237 |
+
### Training Dataset
|
238 |
+
|
239 |
+
#### Unnamed Dataset
|
240 |
+
|
241 |
+
|
242 |
+
* Size: 10,330 training samples
|
243 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
244 |
+
* Approximate statistics based on the first 1000 samples:
|
245 |
+
| | sentence_0 | sentence_1 | label |
|
246 |
+
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
247 |
+
| type | string | string | int |
|
248 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 30.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>0: ~33.50%</li><li>1: ~32.70%</li><li>2: ~33.80%</li></ul> |
|
249 |
+
* Samples:
|
250 |
+
| sentence_0 | sentence_1 | label |
|
251 |
+
|:-----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------|
|
252 |
+
| <code>Ini adalah coup de grâce dan dorongan yang dibutuhkan oleh para pendatang untuk mendapatkan kemerdekaan mereka.</code> | <code>Pendatang tidak mendapatkan kemerdekaan.</code> | <code>2</code> |
|
253 |
+
| <code>Dua bayi almarhum Raja, Diana dan Suharna, diculik.</code> | <code>Jumlah bayi raja yang diculik sudah mencapai 2 bayi.</code> | <code>1</code> |
|
254 |
+
| <code>Sebuah penelitian menunjukkan bahwa mengkonsumsi makanan yang tinggi kadar gulanya bisa meningkatkan rasa haus.</code> | <code>Tidak ada penelitian yang bertopik makanan yang kadar gulanya tinggi.</code> | <code>2</code> |
|
255 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
256 |
+
```json
|
257 |
+
{
|
258 |
+
"scale": 20.0,
|
259 |
+
"similarity_fct": "cos_sim"
|
260 |
+
}
|
261 |
+
```
|
262 |
+
|
263 |
+
### Training Hyperparameters
|
264 |
+
#### Non-Default Hyperparameters
|
265 |
+
|
266 |
+
- `eval_strategy`: steps
|
267 |
+
- `per_device_train_batch_size`: 4
|
268 |
+
- `per_device_eval_batch_size`: 4
|
269 |
+
- `num_train_epochs`: 20
|
270 |
+
- `multi_dataset_batch_sampler`: round_robin
|
271 |
+
|
272 |
+
#### All Hyperparameters
|
273 |
+
<details><summary>Click to expand</summary>
|
274 |
+
|
275 |
+
- `overwrite_output_dir`: False
|
276 |
+
- `do_predict`: False
|
277 |
+
- `eval_strategy`: steps
|
278 |
+
- `prediction_loss_only`: True
|
279 |
+
- `per_device_train_batch_size`: 4
|
280 |
+
- `per_device_eval_batch_size`: 4
|
281 |
+
- `per_gpu_train_batch_size`: None
|
282 |
+
- `per_gpu_eval_batch_size`: None
|
283 |
+
- `gradient_accumulation_steps`: 1
|
284 |
+
- `eval_accumulation_steps`: None
|
285 |
+
- `learning_rate`: 5e-05
|
286 |
+
- `weight_decay`: 0.0
|
287 |
+
- `adam_beta1`: 0.9
|
288 |
+
- `adam_beta2`: 0.999
|
289 |
+
- `adam_epsilon`: 1e-08
|
290 |
+
- `max_grad_norm`: 1
|
291 |
+
- `num_train_epochs`: 20
|
292 |
+
- `max_steps`: -1
|
293 |
+
- `lr_scheduler_type`: linear
|
294 |
+
- `lr_scheduler_kwargs`: {}
|
295 |
+
- `warmup_ratio`: 0.0
|
296 |
+
- `warmup_steps`: 0
|
297 |
+
- `log_level`: passive
|
298 |
+
- `log_level_replica`: warning
|
299 |
+
- `log_on_each_node`: True
|
300 |
+
- `logging_nan_inf_filter`: True
|
301 |
+
- `save_safetensors`: True
|
302 |
+
- `save_on_each_node`: False
|
303 |
+
- `save_only_model`: False
|
304 |
+
- `restore_callback_states_from_checkpoint`: False
|
305 |
+
- `no_cuda`: False
|
306 |
+
- `use_cpu`: False
|
307 |
+
- `use_mps_device`: False
|
308 |
+
- `seed`: 42
|
309 |
+
- `data_seed`: None
|
310 |
+
- `jit_mode_eval`: False
|
311 |
+
- `use_ipex`: False
|
312 |
+
- `bf16`: False
|
313 |
+
- `fp16`: False
|
314 |
+
- `fp16_opt_level`: O1
|
315 |
+
- `half_precision_backend`: auto
|
316 |
+
- `bf16_full_eval`: False
|
317 |
+
- `fp16_full_eval`: False
|
318 |
+
- `tf32`: None
|
319 |
+
- `local_rank`: 0
|
320 |
+
- `ddp_backend`: None
|
321 |
+
- `tpu_num_cores`: None
|
322 |
+
- `tpu_metrics_debug`: False
|
323 |
+
- `debug`: []
|
324 |
+
- `dataloader_drop_last`: False
|
325 |
+
- `dataloader_num_workers`: 0
|
326 |
+
- `dataloader_prefetch_factor`: None
|
327 |
+
- `past_index`: -1
|
328 |
+
- `disable_tqdm`: False
|
329 |
+
- `remove_unused_columns`: True
|
330 |
+
- `label_names`: None
|
331 |
+
- `load_best_model_at_end`: False
|
332 |
+
- `ignore_data_skip`: False
|
333 |
+
- `fsdp`: []
|
334 |
+
- `fsdp_min_num_params`: 0
|
335 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
336 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
337 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
338 |
+
- `deepspeed`: None
|
339 |
+
- `label_smoothing_factor`: 0.0
|
340 |
+
- `optim`: adamw_torch
|
341 |
+
- `optim_args`: None
|
342 |
+
- `adafactor`: False
|
343 |
+
- `group_by_length`: False
|
344 |
+
- `length_column_name`: length
|
345 |
+
- `ddp_find_unused_parameters`: None
|
346 |
+
- `ddp_bucket_cap_mb`: None
|
347 |
+
- `ddp_broadcast_buffers`: False
|
348 |
+
- `dataloader_pin_memory`: True
|
349 |
+
- `dataloader_persistent_workers`: False
|
350 |
+
- `skip_memory_metrics`: True
|
351 |
+
- `use_legacy_prediction_loop`: False
|
352 |
+
- `push_to_hub`: False
|
353 |
+
- `resume_from_checkpoint`: None
|
354 |
+
- `hub_model_id`: None
|
355 |
+
- `hub_strategy`: every_save
|
356 |
+
- `hub_private_repo`: False
|
357 |
+
- `hub_always_push`: False
|
358 |
+
- `gradient_checkpointing`: False
|
359 |
+
- `gradient_checkpointing_kwargs`: None
|
360 |
+
- `include_inputs_for_metrics`: False
|
361 |
+
- `eval_do_concat_batches`: True
|
362 |
+
- `fp16_backend`: auto
|
363 |
+
- `push_to_hub_model_id`: None
|
364 |
+
- `push_to_hub_organization`: None
|
365 |
+
- `mp_parameters`:
|
366 |
+
- `auto_find_batch_size`: False
|
367 |
+
- `full_determinism`: False
|
368 |
+
- `torchdynamo`: None
|
369 |
+
- `ray_scope`: last
|
370 |
+
- `ddp_timeout`: 1800
|
371 |
+
- `torch_compile`: False
|
372 |
+
- `torch_compile_backend`: None
|
373 |
+
- `torch_compile_mode`: None
|
374 |
+
- `dispatch_batches`: None
|
375 |
+
- `split_batches`: None
|
376 |
+
- `include_tokens_per_second`: False
|
377 |
+
- `include_num_input_tokens_seen`: False
|
378 |
+
- `neftune_noise_alpha`: None
|
379 |
+
- `optim_target_modules`: None
|
380 |
+
- `batch_eval_metrics`: False
|
381 |
+
- `batch_sampler`: batch_sampler
|
382 |
+
- `multi_dataset_batch_sampler`: round_robin
|
383 |
+
|
384 |
+
</details>
|
385 |
+
|
386 |
+
### Training Logs
|
387 |
+
<details><summary>Click to expand</summary>
|
388 |
+
|
389 |
+
| Epoch | Step | Training Loss | sts-dev_spearman_max |
|
390 |
+
|:-------:|:-----:|:-------------:|:--------------------:|
|
391 |
+
| 0.0998 | 129 | - | -0.0821 |
|
392 |
+
| 0.0999 | 258 | - | -0.0541 |
|
393 |
+
| 0.1936 | 500 | 0.0322 | - |
|
394 |
+
| 0.1998 | 516 | - | -0.0474 |
|
395 |
+
| 0.2997 | 774 | - | -0.0369 |
|
396 |
+
| 0.3871 | 1000 | 0.0157 | - |
|
397 |
+
| 0.3995 | 1032 | - | -0.0371 |
|
398 |
+
| 0.4994 | 1290 | - | -0.0388 |
|
399 |
+
| 0.5807 | 1500 | 0.0109 | - |
|
400 |
+
| 0.5993 | 1548 | - | -0.0284 |
|
401 |
+
| 0.6992 | 1806 | - | -0.0293 |
|
402 |
+
| 0.7743 | 2000 | 0.0112 | - |
|
403 |
+
| 0.7991 | 2064 | - | -0.0176 |
|
404 |
+
| 0.8990 | 2322 | - | -0.0290 |
|
405 |
+
| 0.9679 | 2500 | 0.0104 | - |
|
406 |
+
| 0.9988 | 2580 | - | -0.0128 |
|
407 |
+
| 1.0 | 2583 | - | -0.0123 |
|
408 |
+
| 1.0987 | 2838 | - | -0.0200 |
|
409 |
+
| 1.1614 | 3000 | 0.0091 | - |
|
410 |
+
| 1.1986 | 3096 | - | -0.0202 |
|
411 |
+
| 1.2985 | 3354 | - | -0.0204 |
|
412 |
+
| 1.3550 | 3500 | 0.0052 | - |
|
413 |
+
| 1.3984 | 3612 | - | -0.0231 |
|
414 |
+
| 1.4983 | 3870 | - | -0.0312 |
|
415 |
+
| 1.5486 | 4000 | 0.0017 | - |
|
416 |
+
| 1.5981 | 4128 | - | -0.0277 |
|
417 |
+
| 1.6980 | 4386 | - | -0.0366 |
|
418 |
+
| 1.7422 | 4500 | 0.0054 | - |
|
419 |
+
| 1.7979 | 4644 | - | -0.0192 |
|
420 |
+
| 1.8978 | 4902 | - | -0.0224 |
|
421 |
+
| 1.9357 | 5000 | 0.0048 | - |
|
422 |
+
| 1.9977 | 5160 | - | -0.0240 |
|
423 |
+
| 2.0 | 5166 | - | -0.0248 |
|
424 |
+
| 2.0976 | 5418 | - | -0.0374 |
|
425 |
+
| 2.1293 | 5500 | 0.0045 | - |
|
426 |
+
| 2.1974 | 5676 | - | -0.0215 |
|
427 |
+
| 2.2973 | 5934 | - | -0.0329 |
|
428 |
+
| 2.3229 | 6000 | 0.0047 | - |
|
429 |
+
| 2.3972 | 6192 | - | -0.0284 |
|
430 |
+
| 2.4971 | 6450 | - | -0.0370 |
|
431 |
+
| 2.5165 | 6500 | 0.0037 | - |
|
432 |
+
| 2.5970 | 6708 | - | -0.0390 |
|
433 |
+
| 2.6969 | 6966 | - | -0.0681 |
|
434 |
+
| 2.7100 | 7000 | 0.0128 | - |
|
435 |
+
| 2.7967 | 7224 | - | -0.0343 |
|
436 |
+
| 2.8966 | 7482 | - | -0.0413 |
|
437 |
+
| 2.9036 | 7500 | 0.0055 | - |
|
438 |
+
| 2.9965 | 7740 | - | -0.0416 |
|
439 |
+
| 3.0 | 7749 | - | -0.0373 |
|
440 |
+
| 3.0964 | 7998 | - | -0.0630 |
|
441 |
+
| 3.0972 | 8000 | 0.0016 | - |
|
442 |
+
| 3.1963 | 8256 | - | -0.0401 |
|
443 |
+
| 3.2907 | 8500 | 0.0018 | - |
|
444 |
+
| 3.2962 | 8514 | - | -0.0303 |
|
445 |
+
| 3.3961 | 8772 | - | -0.0484 |
|
446 |
+
| 3.4843 | 9000 | 0.0017 | - |
|
447 |
+
| 3.4959 | 9030 | - | -0.0619 |
|
448 |
+
| 3.5958 | 9288 | - | -0.0411 |
|
449 |
+
| 3.6779 | 9500 | 0.007 | - |
|
450 |
+
| 3.6957 | 9546 | - | -0.0408 |
|
451 |
+
| 3.7956 | 9804 | - | -0.0368 |
|
452 |
+
| 3.8715 | 10000 | 0.0029 | - |
|
453 |
+
| 3.8955 | 10062 | - | -0.0429 |
|
454 |
+
| 3.9954 | 10320 | - | -0.0526 |
|
455 |
+
| 4.0 | 10332 | - | -0.0494 |
|
456 |
+
| 4.0650 | 10500 | 0.0004 | - |
|
457 |
+
| 4.0952 | 10578 | - | -0.0385 |
|
458 |
+
| 4.1951 | 10836 | - | -0.0467 |
|
459 |
+
| 4.2586 | 11000 | 0.0004 | - |
|
460 |
+
| 4.2950 | 11094 | - | -0.0500 |
|
461 |
+
| 4.3949 | 11352 | - | -0.0458 |
|
462 |
+
| 4.4522 | 11500 | 0.0011 | - |
|
463 |
+
| 4.4948 | 11610 | - | -0.0389 |
|
464 |
+
| 4.5947 | 11868 | - | -0.0401 |
|
465 |
+
| 4.6458 | 12000 | 0.0046 | - |
|
466 |
+
| 4.6945 | 12126 | - | -0.0370 |
|
467 |
+
| 4.7944 | 12384 | - | -0.0495 |
|
468 |
+
| 4.8393 | 12500 | 0.0104 | - |
|
469 |
+
| 4.8943 | 12642 | - | -0.0504 |
|
470 |
+
| 4.9942 | 12900 | - | -0.0377 |
|
471 |
+
| 5.0 | 12915 | - | -0.0379 |
|
472 |
+
| 5.0329 | 13000 | 0.0005 | - |
|
473 |
+
| 5.0941 | 13158 | - | -0.0617 |
|
474 |
+
| 5.1940 | 13416 | - | -0.0354 |
|
475 |
+
| 5.2265 | 13500 | 0.0006 | - |
|
476 |
+
| 5.2938 | 13674 | - | -0.0514 |
|
477 |
+
| 5.3937 | 13932 | - | -0.0615 |
|
478 |
+
| 5.4201 | 14000 | 0.0014 | - |
|
479 |
+
| 5.4936 | 14190 | - | -0.0574 |
|
480 |
+
| 5.5935 | 14448 | - | -0.0503 |
|
481 |
+
| 5.6136 | 14500 | 0.0025 | - |
|
482 |
+
| 5.6934 | 14706 | - | -0.0512 |
|
483 |
+
| 5.7933 | 14964 | - | -0.0316 |
|
484 |
+
| 5.8072 | 15000 | 0.0029 | - |
|
485 |
+
| 5.8931 | 15222 | - | -0.0475 |
|
486 |
+
| 5.9930 | 15480 | - | -0.0429 |
|
487 |
+
| 6.0 | 15498 | - | -0.0377 |
|
488 |
+
| 6.0008 | 15500 | 0.0003 | - |
|
489 |
+
| 6.0929 | 15738 | - | -0.0486 |
|
490 |
+
| 6.1928 | 15996 | - | -0.0512 |
|
491 |
+
| 6.1943 | 16000 | 0.0002 | - |
|
492 |
+
| 6.2927 | 16254 | - | -0.0383 |
|
493 |
+
| 6.3879 | 16500 | 0.0017 | - |
|
494 |
+
| 6.3926 | 16512 | - | -0.0460 |
|
495 |
+
| 6.4925 | 16770 | - | -0.0439 |
|
496 |
+
| 6.5815 | 17000 | 0.0046 | - |
|
497 |
+
| 6.5923 | 17028 | - | -0.0378 |
|
498 |
+
| 6.6922 | 17286 | - | -0.0289 |
|
499 |
+
| 6.7751 | 17500 | 0.0081 | - |
|
500 |
+
| 6.7921 | 17544 | - | -0.0415 |
|
501 |
+
| 6.8920 | 17802 | - | -0.0451 |
|
502 |
+
| 6.9686 | 18000 | 0.0021 | - |
|
503 |
+
| 6.9919 | 18060 | - | -0.0386 |
|
504 |
+
| 7.0 | 18081 | - | -0.0390 |
|
505 |
+
| 7.0918 | 18318 | - | -0.0460 |
|
506 |
+
| 7.1622 | 18500 | 0.0001 | - |
|
507 |
+
| 7.1916 | 18576 | - | -0.0510 |
|
508 |
+
| 7.2915 | 18834 | - | -0.0566 |
|
509 |
+
| 7.3558 | 19000 | 0.0009 | - |
|
510 |
+
| 7.3914 | 19092 | - | -0.0479 |
|
511 |
+
| 7.4913 | 19350 | - | -0.0456 |
|
512 |
+
| 7.5494 | 19500 | 0.0019 | - |
|
513 |
+
| 7.5912 | 19608 | - | -0.0371 |
|
514 |
+
| 7.6911 | 19866 | - | -0.0184 |
|
515 |
+
| 7.7429 | 20000 | 0.003 | - |
|
516 |
+
| 7.7909 | 20124 | - | -0.0312 |
|
517 |
+
| 7.8908 | 20382 | - | -0.0307 |
|
518 |
+
| 7.9365 | 20500 | 0.0008 | - |
|
519 |
+
| 7.9907 | 20640 | - | -0.0291 |
|
520 |
+
| 8.0 | 20664 | - | -0.0298 |
|
521 |
+
| 8.0906 | 20898 | - | -0.0452 |
|
522 |
+
| 8.1301 | 21000 | 0.0001 | - |
|
523 |
+
| 8.1905 | 21156 | - | -0.0405 |
|
524 |
+
| 8.2904 | 21414 | - | -0.0417 |
|
525 |
+
| 8.3237 | 21500 | 0.0007 | - |
|
526 |
+
| 8.3902 | 21672 | - | -0.0430 |
|
527 |
+
| 8.4901 | 21930 | - | -0.0487 |
|
528 |
+
| 8.5172 | 22000 | 0.0 | - |
|
529 |
+
| 8.5900 | 22188 | - | -0.0471 |
|
530 |
+
| 8.6899 | 22446 | - | -0.0361 |
|
531 |
+
| 8.7108 | 22500 | 0.0037 | - |
|
532 |
+
| 8.7898 | 22704 | - | -0.0443 |
|
533 |
+
| 8.8897 | 22962 | - | -0.0404 |
|
534 |
+
| 8.9044 | 23000 | 0.0009 | - |
|
535 |
+
| 8.9895 | 23220 | - | -0.0421 |
|
536 |
+
| 9.0 | 23247 | - | -0.0425 |
|
537 |
+
| 9.0894 | 23478 | - | -0.0451 |
|
538 |
+
| 9.0979 | 23500 | 0.0001 | - |
|
539 |
+
| 9.1893 | 23736 | - | -0.0458 |
|
540 |
+
| 9.2892 | 23994 | - | -0.0479 |
|
541 |
+
| 9.2915 | 24000 | 0.0 | - |
|
542 |
+
| 9.3891 | 24252 | - | -0.0400 |
|
543 |
+
| 9.4851 | 24500 | 0.0014 | - |
|
544 |
+
| 9.4890 | 24510 | - | -0.0374 |
|
545 |
+
| 9.5889 | 24768 | - | -0.0454 |
|
546 |
+
| 9.6787 | 25000 | 0.0075 | - |
|
547 |
+
| 9.6887 | 25026 | - | -0.0230 |
|
548 |
+
| 9.7886 | 25284 | - | -0.0345 |
|
549 |
+
| 9.8722 | 25500 | 0.0007 | - |
|
550 |
+
| 9.8885 | 25542 | - | -0.0301 |
|
551 |
+
| 9.9884 | 25800 | - | -0.0363 |
|
552 |
+
| 10.0 | 25830 | - | -0.0375 |
|
553 |
+
| 10.0658 | 26000 | 0.0001 | - |
|
554 |
+
| 10.0883 | 26058 | - | -0.0381 |
|
555 |
+
| 10.1882 | 26316 | - | -0.0386 |
|
556 |
+
| 10.2594 | 26500 | 0.0 | - |
|
557 |
+
| 10.2880 | 26574 | - | -0.0390 |
|
558 |
+
| 10.3879 | 26832 | - | -0.0366 |
|
559 |
+
| 10.4530 | 27000 | 0.0007 | - |
|
560 |
+
| 10.4878 | 27090 | - | -0.0464 |
|
561 |
+
| 10.5877 | 27348 | - | -0.0509 |
|
562 |
+
| 10.6465 | 27500 | 0.0021 | - |
|
563 |
+
| 10.6876 | 27606 | - | -0.0292 |
|
564 |
+
| 10.7875 | 27864 | - | -0.0514 |
|
565 |
+
| 10.8401 | 28000 | 0.0017 | - |
|
566 |
+
| 10.8873 | 28122 | - | -0.0485 |
|
567 |
+
| 10.9872 | 28380 | - | -0.0471 |
|
568 |
+
| 11.0 | 28413 | - | -0.0468 |
|
569 |
+
| 11.0337 | 28500 | 0.0 | - |
|
570 |
+
| 11.0871 | 28638 | - | -0.0460 |
|
571 |
+
| 11.1870 | 28896 | - | -0.0450 |
|
572 |
+
| 11.2273 | 29000 | 0.0 | - |
|
573 |
+
| 11.2869 | 29154 | - | -0.0457 |
|
574 |
+
| 11.3868 | 29412 | - | -0.0450 |
|
575 |
+
| 11.4208 | 29500 | 0.0008 | - |
|
576 |
+
| 11.4866 | 29670 | - | -0.0440 |
|
577 |
+
| 11.5865 | 29928 | - | -0.0384 |
|
578 |
+
| 11.6144 | 30000 | 0.0028 | - |
|
579 |
+
| 11.6864 | 30186 | - | -0.0066 |
|
580 |
+
|
581 |
+
</details>
|
582 |
+
|
583 |
+
### Framework Versions
|
584 |
+
- Python: 3.10.12
|
585 |
+
- Sentence Transformers: 3.0.1
|
586 |
+
- Transformers: 4.41.2
|
587 |
+
- PyTorch: 2.3.0+cu121
|
588 |
+
- Accelerate: 0.31.0
|
589 |
+
- Datasets: 2.19.2
|
590 |
+
- Tokenizers: 0.19.1
|
591 |
+
|
592 |
+
## Citation
|
593 |
+
|
594 |
+
### BibTeX
|
595 |
+
|
596 |
+
#### Sentence Transformers
|
597 |
+
```bibtex
|
598 |
+
@inproceedings{reimers-2019-sentence-bert,
|
599 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
600 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
601 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
602 |
+
month = "11",
|
603 |
+
year = "2019",
|
604 |
+
publisher = "Association for Computational Linguistics",
|
605 |
+
url = "https://arxiv.org/abs/1908.10084",
|
606 |
+
}
|
607 |
+
```
|
608 |
+
|
609 |
+
#### MultipleNegativesRankingLoss
|
610 |
+
```bibtex
|
611 |
+
@misc{henderson2017efficient,
|
612 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
613 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
614 |
+
year={2017},
|
615 |
+
eprint={1705.00652},
|
616 |
+
archivePrefix={arXiv},
|
617 |
+
primaryClass={cs.CL}
|
618 |
+
}
|
619 |
+
```
|
620 |
+
|
621 |
+
<!--
|
622 |
+
## Glossary
|
623 |
+
|
624 |
+
*Clearly define terms in order to be accessible across audiences.*
|
625 |
+
-->
|
626 |
+
|
627 |
+
<!--
|
628 |
+
## Model Card Authors
|
629 |
+
|
630 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
631 |
+
-->
|
632 |
+
|
633 |
+
<!--
|
634 |
+
## Model Card Contact
|
635 |
+
|
636 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
637 |
+
-->
|