cassador commited on
Commit
b70060b
·
verified ·
1 Parent(s): 9730fb9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +636 -9
README.md CHANGED
@@ -1,10 +1,637 @@
1
- pipeline_tag:sentence-similarity
 
 
2
  tags:
3
- - sentence-transformers
4
- - feature-extraction
5
- - sentence-similarity
6
- - transformers
7
- datasets:
8
- - indonli
9
- language:
10
- - id
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
  tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:10330
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: indobenchmark/indobert-base-p2
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+
25
+ pipeline_tag: sentence-similarity
26
+ model-index:
27
+ - name: SentenceTransformer based on indobenchmark/indobert-base-p2
28
+ results:
29
+ - task:
30
+ type: semantic-similarity
31
+ name: Semantic Similarity
32
+ dataset:
33
+ name: sts dev
34
+ type: sts-dev
35
+ metrics:
36
+ - type: pearson_cosine
37
+ value: -0.0979039836743928
38
+ name: Pearson Cosine
39
+ - type: spearman_cosine
40
+ value: -0.10370853946172742
41
+ name: Spearman Cosine
42
+ - type: pearson_manhattan
43
+ value: -0.0986716229567464
44
+ name: Pearson Manhattan
45
+ - type: spearman_manhattan
46
+ value: -0.10051590980192249
47
+ name: Spearman Manhattan
48
+ - type: pearson_euclidean
49
+ value: -0.09806801008727767
50
+ name: Pearson Euclidean
51
+ - type: spearman_euclidean
52
+ value: -0.09978077307233649
53
+ name: Spearman Euclidean
54
+ - type: pearson_dot
55
+ value: -0.08215757856369725
56
+ name: Pearson Dot
57
+ - type: spearman_dot
58
+ value: -0.08205505573726227
59
+ name: Spearman Dot
60
+ - type: pearson_max
61
+ value: -0.08215757856369725
62
+ name: Pearson Max
63
+ - type: spearman_max
64
+ value: -0.08205505573726227
65
+ name: Spearman Max
66
+ - type: pearson_cosine
67
+ value: -0.02784985879772803
68
+ name: Pearson Cosine
69
+ - type: spearman_cosine
70
+ value: -0.03497736614462515
71
+ name: Spearman Cosine
72
+ - type: pearson_manhattan
73
+ value: -0.03551617173397621
74
+ name: Pearson Manhattan
75
+ - type: spearman_manhattan
76
+ value: -0.03865758617690966
77
+ name: Spearman Manhattan
78
+ - type: pearson_euclidean
79
+ value: -0.0355939001168591
80
+ name: Pearson Euclidean
81
+ - type: spearman_euclidean
82
+ value: -0.03886934284409788
83
+ name: Spearman Euclidean
84
+ - type: pearson_dot
85
+ value: -0.009209251203106355
86
+ name: Pearson Dot
87
+ - type: spearman_dot
88
+ value: -0.006641745341724743
89
+ name: Spearman Dot
90
+ - type: pearson_max
91
+ value: -0.009209251203106355
92
+ name: Pearson Max
93
+ - type: spearman_max
94
+ value: -0.006641745341724743
95
+ name: Spearman Max
96
+ ---
97
+
98
+ # SentenceTransformer based on indobenchmark/indobert-base-p2
99
+
100
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
101
+
102
+ ## Model Details
103
+
104
+ ### Model Description
105
+ - **Model Type:** Sentence Transformer
106
+ - **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
107
+ - **Maximum Sequence Length:** 200 tokens
108
+ - **Output Dimensionality:** 768 tokens
109
+ - **Similarity Function:** Cosine Similarity
110
+ <!-- - **Training Dataset:** Unknown -->
111
+ <!-- - **Language:** Unknown -->
112
+ <!-- - **License:** Unknown -->
113
+
114
+ ### Model Sources
115
+
116
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
117
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
118
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
119
+
120
+ ### Full Model Architecture
121
+
122
+ ```
123
+ SentenceTransformer(
124
+ (0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: BertModel
125
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
126
+ )
127
+ ```
128
+
129
+ ## Usage
130
+
131
+ ### Direct Usage (Sentence Transformers)
132
+
133
+ First install the Sentence Transformers library:
134
+
135
+ ```bash
136
+ pip install -U sentence-transformers
137
+ ```
138
+
139
+ Then you can load this model and run inference.
140
+ ```python
141
+ from sentence_transformers import SentenceTransformer
142
+
143
+ # Download from the 🤗 Hub
144
+ model = SentenceTransformer("sentence_transformers_model_id")
145
+ # Run inference
146
+ sentences = [
147
+ 'Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.',
148
+ 'Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.',
149
+ 'Gereja Baptis biasanya cenderung membentuk kelompok sendiri.',
150
+ ]
151
+ embeddings = model.encode(sentences)
152
+ print(embeddings.shape)
153
+ # [3, 768]
154
+
155
+ # Get the similarity scores for the embeddings
156
+ similarities = model.similarity(embeddings, embeddings)
157
+ print(similarities.shape)
158
+ # [3, 3]
159
+ ```
160
+
161
+ <!--
162
+ ### Direct Usage (Transformers)
163
+
164
+ <details><summary>Click to see the direct usage in Transformers</summary>
165
+
166
+ </details>
167
+ -->
168
+
169
+ <!--
170
+ ### Downstream Usage (Sentence Transformers)
171
+
172
+ You can finetune this model on your own dataset.
173
+
174
+ <details><summary>Click to expand</summary>
175
+
176
+ </details>
177
+ -->
178
+
179
+ <!--
180
+ ### Out-of-Scope Use
181
+
182
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
183
+ -->
184
+
185
+ ## Evaluation
186
+
187
+ ### Metrics
188
+
189
+ #### Semantic Similarity
190
+ * Dataset: `sts-dev`
191
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
192
+
193
+ | Metric | Value |
194
+ |:-------------------|:------------|
195
+ | pearson_cosine | -0.0979 |
196
+ | spearman_cosine | -0.1037 |
197
+ | pearson_manhattan | -0.0987 |
198
+ | spearman_manhattan | -0.1005 |
199
+ | pearson_euclidean | -0.0981 |
200
+ | spearman_euclidean | -0.0998 |
201
+ | pearson_dot | -0.0822 |
202
+ | spearman_dot | -0.0821 |
203
+ | pearson_max | -0.0822 |
204
+ | **spearman_max** | **-0.0821** |
205
+
206
+ #### Semantic Similarity
207
+ * Dataset: `sts-dev`
208
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
209
+
210
+ | Metric | Value |
211
+ |:-------------------|:------------|
212
+ | pearson_cosine | -0.0278 |
213
+ | spearman_cosine | -0.035 |
214
+ | pearson_manhattan | -0.0355 |
215
+ | spearman_manhattan | -0.0387 |
216
+ | pearson_euclidean | -0.0356 |
217
+ | spearman_euclidean | -0.0389 |
218
+ | pearson_dot | -0.0092 |
219
+ | spearman_dot | -0.0066 |
220
+ | pearson_max | -0.0092 |
221
+ | **spearman_max** | **-0.0066** |
222
+
223
+ <!--
224
+ ## Bias, Risks and Limitations
225
+
226
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
227
+ -->
228
+
229
+ <!--
230
+ ### Recommendations
231
+
232
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
233
+ -->
234
+
235
+ ## Training Details
236
+
237
+ ### Training Dataset
238
+
239
+ #### Unnamed Dataset
240
+
241
+
242
+ * Size: 10,330 training samples
243
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
244
+ * Approximate statistics based on the first 1000 samples:
245
+ | | sentence_0 | sentence_1 | label |
246
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
247
+ | type | string | string | int |
248
+ | details | <ul><li>min: 10 tokens</li><li>mean: 30.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>0: ~33.50%</li><li>1: ~32.70%</li><li>2: ~33.80%</li></ul> |
249
+ * Samples:
250
+ | sentence_0 | sentence_1 | label |
251
+ |:-----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------|
252
+ | <code>Ini adalah coup de grâce dan dorongan yang dibutuhkan oleh para pendatang untuk mendapatkan kemerdekaan mereka.</code> | <code>Pendatang tidak mendapatkan kemerdekaan.</code> | <code>2</code> |
253
+ | <code>Dua bayi almarhum Raja, Diana dan Suharna, diculik.</code> | <code>Jumlah bayi raja yang diculik sudah mencapai 2 bayi.</code> | <code>1</code> |
254
+ | <code>Sebuah penelitian menunjukkan bahwa mengkonsumsi makanan yang tinggi kadar gulanya bisa meningkatkan rasa haus.</code> | <code>Tidak ada penelitian yang bertopik makanan yang kadar gulanya tinggi.</code> | <code>2</code> |
255
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
256
+ ```json
257
+ {
258
+ "scale": 20.0,
259
+ "similarity_fct": "cos_sim"
260
+ }
261
+ ```
262
+
263
+ ### Training Hyperparameters
264
+ #### Non-Default Hyperparameters
265
+
266
+ - `eval_strategy`: steps
267
+ - `per_device_train_batch_size`: 4
268
+ - `per_device_eval_batch_size`: 4
269
+ - `num_train_epochs`: 20
270
+ - `multi_dataset_batch_sampler`: round_robin
271
+
272
+ #### All Hyperparameters
273
+ <details><summary>Click to expand</summary>
274
+
275
+ - `overwrite_output_dir`: False
276
+ - `do_predict`: False
277
+ - `eval_strategy`: steps
278
+ - `prediction_loss_only`: True
279
+ - `per_device_train_batch_size`: 4
280
+ - `per_device_eval_batch_size`: 4
281
+ - `per_gpu_train_batch_size`: None
282
+ - `per_gpu_eval_batch_size`: None
283
+ - `gradient_accumulation_steps`: 1
284
+ - `eval_accumulation_steps`: None
285
+ - `learning_rate`: 5e-05
286
+ - `weight_decay`: 0.0
287
+ - `adam_beta1`: 0.9
288
+ - `adam_beta2`: 0.999
289
+ - `adam_epsilon`: 1e-08
290
+ - `max_grad_norm`: 1
291
+ - `num_train_epochs`: 20
292
+ - `max_steps`: -1
293
+ - `lr_scheduler_type`: linear
294
+ - `lr_scheduler_kwargs`: {}
295
+ - `warmup_ratio`: 0.0
296
+ - `warmup_steps`: 0
297
+ - `log_level`: passive
298
+ - `log_level_replica`: warning
299
+ - `log_on_each_node`: True
300
+ - `logging_nan_inf_filter`: True
301
+ - `save_safetensors`: True
302
+ - `save_on_each_node`: False
303
+ - `save_only_model`: False
304
+ - `restore_callback_states_from_checkpoint`: False
305
+ - `no_cuda`: False
306
+ - `use_cpu`: False
307
+ - `use_mps_device`: False
308
+ - `seed`: 42
309
+ - `data_seed`: None
310
+ - `jit_mode_eval`: False
311
+ - `use_ipex`: False
312
+ - `bf16`: False
313
+ - `fp16`: False
314
+ - `fp16_opt_level`: O1
315
+ - `half_precision_backend`: auto
316
+ - `bf16_full_eval`: False
317
+ - `fp16_full_eval`: False
318
+ - `tf32`: None
319
+ - `local_rank`: 0
320
+ - `ddp_backend`: None
321
+ - `tpu_num_cores`: None
322
+ - `tpu_metrics_debug`: False
323
+ - `debug`: []
324
+ - `dataloader_drop_last`: False
325
+ - `dataloader_num_workers`: 0
326
+ - `dataloader_prefetch_factor`: None
327
+ - `past_index`: -1
328
+ - `disable_tqdm`: False
329
+ - `remove_unused_columns`: True
330
+ - `label_names`: None
331
+ - `load_best_model_at_end`: False
332
+ - `ignore_data_skip`: False
333
+ - `fsdp`: []
334
+ - `fsdp_min_num_params`: 0
335
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
336
+ - `fsdp_transformer_layer_cls_to_wrap`: None
337
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
338
+ - `deepspeed`: None
339
+ - `label_smoothing_factor`: 0.0
340
+ - `optim`: adamw_torch
341
+ - `optim_args`: None
342
+ - `adafactor`: False
343
+ - `group_by_length`: False
344
+ - `length_column_name`: length
345
+ - `ddp_find_unused_parameters`: None
346
+ - `ddp_bucket_cap_mb`: None
347
+ - `ddp_broadcast_buffers`: False
348
+ - `dataloader_pin_memory`: True
349
+ - `dataloader_persistent_workers`: False
350
+ - `skip_memory_metrics`: True
351
+ - `use_legacy_prediction_loop`: False
352
+ - `push_to_hub`: False
353
+ - `resume_from_checkpoint`: None
354
+ - `hub_model_id`: None
355
+ - `hub_strategy`: every_save
356
+ - `hub_private_repo`: False
357
+ - `hub_always_push`: False
358
+ - `gradient_checkpointing`: False
359
+ - `gradient_checkpointing_kwargs`: None
360
+ - `include_inputs_for_metrics`: False
361
+ - `eval_do_concat_batches`: True
362
+ - `fp16_backend`: auto
363
+ - `push_to_hub_model_id`: None
364
+ - `push_to_hub_organization`: None
365
+ - `mp_parameters`:
366
+ - `auto_find_batch_size`: False
367
+ - `full_determinism`: False
368
+ - `torchdynamo`: None
369
+ - `ray_scope`: last
370
+ - `ddp_timeout`: 1800
371
+ - `torch_compile`: False
372
+ - `torch_compile_backend`: None
373
+ - `torch_compile_mode`: None
374
+ - `dispatch_batches`: None
375
+ - `split_batches`: None
376
+ - `include_tokens_per_second`: False
377
+ - `include_num_input_tokens_seen`: False
378
+ - `neftune_noise_alpha`: None
379
+ - `optim_target_modules`: None
380
+ - `batch_eval_metrics`: False
381
+ - `batch_sampler`: batch_sampler
382
+ - `multi_dataset_batch_sampler`: round_robin
383
+
384
+ </details>
385
+
386
+ ### Training Logs
387
+ <details><summary>Click to expand</summary>
388
+
389
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
390
+ |:-------:|:-----:|:-------------:|:--------------------:|
391
+ | 0.0998 | 129 | - | -0.0821 |
392
+ | 0.0999 | 258 | - | -0.0541 |
393
+ | 0.1936 | 500 | 0.0322 | - |
394
+ | 0.1998 | 516 | - | -0.0474 |
395
+ | 0.2997 | 774 | - | -0.0369 |
396
+ | 0.3871 | 1000 | 0.0157 | - |
397
+ | 0.3995 | 1032 | - | -0.0371 |
398
+ | 0.4994 | 1290 | - | -0.0388 |
399
+ | 0.5807 | 1500 | 0.0109 | - |
400
+ | 0.5993 | 1548 | - | -0.0284 |
401
+ | 0.6992 | 1806 | - | -0.0293 |
402
+ | 0.7743 | 2000 | 0.0112 | - |
403
+ | 0.7991 | 2064 | - | -0.0176 |
404
+ | 0.8990 | 2322 | - | -0.0290 |
405
+ | 0.9679 | 2500 | 0.0104 | - |
406
+ | 0.9988 | 2580 | - | -0.0128 |
407
+ | 1.0 | 2583 | - | -0.0123 |
408
+ | 1.0987 | 2838 | - | -0.0200 |
409
+ | 1.1614 | 3000 | 0.0091 | - |
410
+ | 1.1986 | 3096 | - | -0.0202 |
411
+ | 1.2985 | 3354 | - | -0.0204 |
412
+ | 1.3550 | 3500 | 0.0052 | - |
413
+ | 1.3984 | 3612 | - | -0.0231 |
414
+ | 1.4983 | 3870 | - | -0.0312 |
415
+ | 1.5486 | 4000 | 0.0017 | - |
416
+ | 1.5981 | 4128 | - | -0.0277 |
417
+ | 1.6980 | 4386 | - | -0.0366 |
418
+ | 1.7422 | 4500 | 0.0054 | - |
419
+ | 1.7979 | 4644 | - | -0.0192 |
420
+ | 1.8978 | 4902 | - | -0.0224 |
421
+ | 1.9357 | 5000 | 0.0048 | - |
422
+ | 1.9977 | 5160 | - | -0.0240 |
423
+ | 2.0 | 5166 | - | -0.0248 |
424
+ | 2.0976 | 5418 | - | -0.0374 |
425
+ | 2.1293 | 5500 | 0.0045 | - |
426
+ | 2.1974 | 5676 | - | -0.0215 |
427
+ | 2.2973 | 5934 | - | -0.0329 |
428
+ | 2.3229 | 6000 | 0.0047 | - |
429
+ | 2.3972 | 6192 | - | -0.0284 |
430
+ | 2.4971 | 6450 | - | -0.0370 |
431
+ | 2.5165 | 6500 | 0.0037 | - |
432
+ | 2.5970 | 6708 | - | -0.0390 |
433
+ | 2.6969 | 6966 | - | -0.0681 |
434
+ | 2.7100 | 7000 | 0.0128 | - |
435
+ | 2.7967 | 7224 | - | -0.0343 |
436
+ | 2.8966 | 7482 | - | -0.0413 |
437
+ | 2.9036 | 7500 | 0.0055 | - |
438
+ | 2.9965 | 7740 | - | -0.0416 |
439
+ | 3.0 | 7749 | - | -0.0373 |
440
+ | 3.0964 | 7998 | - | -0.0630 |
441
+ | 3.0972 | 8000 | 0.0016 | - |
442
+ | 3.1963 | 8256 | - | -0.0401 |
443
+ | 3.2907 | 8500 | 0.0018 | - |
444
+ | 3.2962 | 8514 | - | -0.0303 |
445
+ | 3.3961 | 8772 | - | -0.0484 |
446
+ | 3.4843 | 9000 | 0.0017 | - |
447
+ | 3.4959 | 9030 | - | -0.0619 |
448
+ | 3.5958 | 9288 | - | -0.0411 |
449
+ | 3.6779 | 9500 | 0.007 | - |
450
+ | 3.6957 | 9546 | - | -0.0408 |
451
+ | 3.7956 | 9804 | - | -0.0368 |
452
+ | 3.8715 | 10000 | 0.0029 | - |
453
+ | 3.8955 | 10062 | - | -0.0429 |
454
+ | 3.9954 | 10320 | - | -0.0526 |
455
+ | 4.0 | 10332 | - | -0.0494 |
456
+ | 4.0650 | 10500 | 0.0004 | - |
457
+ | 4.0952 | 10578 | - | -0.0385 |
458
+ | 4.1951 | 10836 | - | -0.0467 |
459
+ | 4.2586 | 11000 | 0.0004 | - |
460
+ | 4.2950 | 11094 | - | -0.0500 |
461
+ | 4.3949 | 11352 | - | -0.0458 |
462
+ | 4.4522 | 11500 | 0.0011 | - |
463
+ | 4.4948 | 11610 | - | -0.0389 |
464
+ | 4.5947 | 11868 | - | -0.0401 |
465
+ | 4.6458 | 12000 | 0.0046 | - |
466
+ | 4.6945 | 12126 | - | -0.0370 |
467
+ | 4.7944 | 12384 | - | -0.0495 |
468
+ | 4.8393 | 12500 | 0.0104 | - |
469
+ | 4.8943 | 12642 | - | -0.0504 |
470
+ | 4.9942 | 12900 | - | -0.0377 |
471
+ | 5.0 | 12915 | - | -0.0379 |
472
+ | 5.0329 | 13000 | 0.0005 | - |
473
+ | 5.0941 | 13158 | - | -0.0617 |
474
+ | 5.1940 | 13416 | - | -0.0354 |
475
+ | 5.2265 | 13500 | 0.0006 | - |
476
+ | 5.2938 | 13674 | - | -0.0514 |
477
+ | 5.3937 | 13932 | - | -0.0615 |
478
+ | 5.4201 | 14000 | 0.0014 | - |
479
+ | 5.4936 | 14190 | - | -0.0574 |
480
+ | 5.5935 | 14448 | - | -0.0503 |
481
+ | 5.6136 | 14500 | 0.0025 | - |
482
+ | 5.6934 | 14706 | - | -0.0512 |
483
+ | 5.7933 | 14964 | - | -0.0316 |
484
+ | 5.8072 | 15000 | 0.0029 | - |
485
+ | 5.8931 | 15222 | - | -0.0475 |
486
+ | 5.9930 | 15480 | - | -0.0429 |
487
+ | 6.0 | 15498 | - | -0.0377 |
488
+ | 6.0008 | 15500 | 0.0003 | - |
489
+ | 6.0929 | 15738 | - | -0.0486 |
490
+ | 6.1928 | 15996 | - | -0.0512 |
491
+ | 6.1943 | 16000 | 0.0002 | - |
492
+ | 6.2927 | 16254 | - | -0.0383 |
493
+ | 6.3879 | 16500 | 0.0017 | - |
494
+ | 6.3926 | 16512 | - | -0.0460 |
495
+ | 6.4925 | 16770 | - | -0.0439 |
496
+ | 6.5815 | 17000 | 0.0046 | - |
497
+ | 6.5923 | 17028 | - | -0.0378 |
498
+ | 6.6922 | 17286 | - | -0.0289 |
499
+ | 6.7751 | 17500 | 0.0081 | - |
500
+ | 6.7921 | 17544 | - | -0.0415 |
501
+ | 6.8920 | 17802 | - | -0.0451 |
502
+ | 6.9686 | 18000 | 0.0021 | - |
503
+ | 6.9919 | 18060 | - | -0.0386 |
504
+ | 7.0 | 18081 | - | -0.0390 |
505
+ | 7.0918 | 18318 | - | -0.0460 |
506
+ | 7.1622 | 18500 | 0.0001 | - |
507
+ | 7.1916 | 18576 | - | -0.0510 |
508
+ | 7.2915 | 18834 | - | -0.0566 |
509
+ | 7.3558 | 19000 | 0.0009 | - |
510
+ | 7.3914 | 19092 | - | -0.0479 |
511
+ | 7.4913 | 19350 | - | -0.0456 |
512
+ | 7.5494 | 19500 | 0.0019 | - |
513
+ | 7.5912 | 19608 | - | -0.0371 |
514
+ | 7.6911 | 19866 | - | -0.0184 |
515
+ | 7.7429 | 20000 | 0.003 | - |
516
+ | 7.7909 | 20124 | - | -0.0312 |
517
+ | 7.8908 | 20382 | - | -0.0307 |
518
+ | 7.9365 | 20500 | 0.0008 | - |
519
+ | 7.9907 | 20640 | - | -0.0291 |
520
+ | 8.0 | 20664 | - | -0.0298 |
521
+ | 8.0906 | 20898 | - | -0.0452 |
522
+ | 8.1301 | 21000 | 0.0001 | - |
523
+ | 8.1905 | 21156 | - | -0.0405 |
524
+ | 8.2904 | 21414 | - | -0.0417 |
525
+ | 8.3237 | 21500 | 0.0007 | - |
526
+ | 8.3902 | 21672 | - | -0.0430 |
527
+ | 8.4901 | 21930 | - | -0.0487 |
528
+ | 8.5172 | 22000 | 0.0 | - |
529
+ | 8.5900 | 22188 | - | -0.0471 |
530
+ | 8.6899 | 22446 | - | -0.0361 |
531
+ | 8.7108 | 22500 | 0.0037 | - |
532
+ | 8.7898 | 22704 | - | -0.0443 |
533
+ | 8.8897 | 22962 | - | -0.0404 |
534
+ | 8.9044 | 23000 | 0.0009 | - |
535
+ | 8.9895 | 23220 | - | -0.0421 |
536
+ | 9.0 | 23247 | - | -0.0425 |
537
+ | 9.0894 | 23478 | - | -0.0451 |
538
+ | 9.0979 | 23500 | 0.0001 | - |
539
+ | 9.1893 | 23736 | - | -0.0458 |
540
+ | 9.2892 | 23994 | - | -0.0479 |
541
+ | 9.2915 | 24000 | 0.0 | - |
542
+ | 9.3891 | 24252 | - | -0.0400 |
543
+ | 9.4851 | 24500 | 0.0014 | - |
544
+ | 9.4890 | 24510 | - | -0.0374 |
545
+ | 9.5889 | 24768 | - | -0.0454 |
546
+ | 9.6787 | 25000 | 0.0075 | - |
547
+ | 9.6887 | 25026 | - | -0.0230 |
548
+ | 9.7886 | 25284 | - | -0.0345 |
549
+ | 9.8722 | 25500 | 0.0007 | - |
550
+ | 9.8885 | 25542 | - | -0.0301 |
551
+ | 9.9884 | 25800 | - | -0.0363 |
552
+ | 10.0 | 25830 | - | -0.0375 |
553
+ | 10.0658 | 26000 | 0.0001 | - |
554
+ | 10.0883 | 26058 | - | -0.0381 |
555
+ | 10.1882 | 26316 | - | -0.0386 |
556
+ | 10.2594 | 26500 | 0.0 | - |
557
+ | 10.2880 | 26574 | - | -0.0390 |
558
+ | 10.3879 | 26832 | - | -0.0366 |
559
+ | 10.4530 | 27000 | 0.0007 | - |
560
+ | 10.4878 | 27090 | - | -0.0464 |
561
+ | 10.5877 | 27348 | - | -0.0509 |
562
+ | 10.6465 | 27500 | 0.0021 | - |
563
+ | 10.6876 | 27606 | - | -0.0292 |
564
+ | 10.7875 | 27864 | - | -0.0514 |
565
+ | 10.8401 | 28000 | 0.0017 | - |
566
+ | 10.8873 | 28122 | - | -0.0485 |
567
+ | 10.9872 | 28380 | - | -0.0471 |
568
+ | 11.0 | 28413 | - | -0.0468 |
569
+ | 11.0337 | 28500 | 0.0 | - |
570
+ | 11.0871 | 28638 | - | -0.0460 |
571
+ | 11.1870 | 28896 | - | -0.0450 |
572
+ | 11.2273 | 29000 | 0.0 | - |
573
+ | 11.2869 | 29154 | - | -0.0457 |
574
+ | 11.3868 | 29412 | - | -0.0450 |
575
+ | 11.4208 | 29500 | 0.0008 | - |
576
+ | 11.4866 | 29670 | - | -0.0440 |
577
+ | 11.5865 | 29928 | - | -0.0384 |
578
+ | 11.6144 | 30000 | 0.0028 | - |
579
+ | 11.6864 | 30186 | - | -0.0066 |
580
+
581
+ </details>
582
+
583
+ ### Framework Versions
584
+ - Python: 3.10.12
585
+ - Sentence Transformers: 3.0.1
586
+ - Transformers: 4.41.2
587
+ - PyTorch: 2.3.0+cu121
588
+ - Accelerate: 0.31.0
589
+ - Datasets: 2.19.2
590
+ - Tokenizers: 0.19.1
591
+
592
+ ## Citation
593
+
594
+ ### BibTeX
595
+
596
+ #### Sentence Transformers
597
+ ```bibtex
598
+ @inproceedings{reimers-2019-sentence-bert,
599
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
600
+ author = "Reimers, Nils and Gurevych, Iryna",
601
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
602
+ month = "11",
603
+ year = "2019",
604
+ publisher = "Association for Computational Linguistics",
605
+ url = "https://arxiv.org/abs/1908.10084",
606
+ }
607
+ ```
608
+
609
+ #### MultipleNegativesRankingLoss
610
+ ```bibtex
611
+ @misc{henderson2017efficient,
612
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
613
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
614
+ year={2017},
615
+ eprint={1705.00652},
616
+ archivePrefix={arXiv},
617
+ primaryClass={cs.CL}
618
+ }
619
+ ```
620
+
621
+ <!--
622
+ ## Glossary
623
+
624
+ *Clearly define terms in order to be accessible across audiences.*
625
+ -->
626
+
627
+ <!--
628
+ ## Model Card Authors
629
+
630
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
631
+ -->
632
+
633
+ <!--
634
+ ## Model Card Contact
635
+
636
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
637
+ -->