castawaypirate commited on
Commit
fcdbb70
·
1 Parent(s): ef37203

lunar lander v2 ppo model

Browse files
LunarLander-v2-PPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd36ec0bc70433d1907a84fab635e5e009e59c1edde5159bf38a0bf63b2a1a34
3
+ size 146191
LunarLander-v2-PPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander-v2-PPO/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78cb689e2950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78cb689e29e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78cb689e2a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78cb689e2b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78cb689e2b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78cb689e2c20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78cb689e2cb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78cb689e2d40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78cb689e2dd0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78cb689e2e60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78cb689e2ef0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78cb689e2f80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78cb689db3c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690874690659532702,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMBQLyHTK4/A94svifPyL5Y+YK8xh38vAAAAAAAAAAAmN6HvrNfAD8UWxU+IXG0vqy9Kr0mzl48AAAAAAAAAACAiyC+HwCbPPMvTj4pGTq+7KFuPN+8tjwAAAAAAAAAAI0pxr3IQeE7W0A+vC21KL7U5DA9bGaHvQAAAAAAAAAA01+ovpSJE70Dq9+9U5WzvKsuQT7lEeA8AAAAAAAAAABatIg9KLmsP9iyHj/yLcm+VOUiPBu4Uz4AAAAAAAAAALoQLb6f1fA88N/oPYApEr5jw6K8g0PovAAAAAAAAAAAGgdbvXc9uz8GMT+/T/9/PtnwxDwtk2q8AAAAAAAAAADNeKq8FJSUugK3mri8K/ez+38MOkFosTcAAIA/AACAPwDoL732NHS6DmeQu6mkjDzyYs864C91vQAAgD8AAIA/LfvLvuW9mb19Szy9cQ+1uw7hTT6YI2C8AACAPwAAgD/aTka+Jyq5P4aVIL8dBq++r/Ssvu4EGr4AAAAAAAAAAPOpkT2Oncc90xXlvRYPOL5tQoQ9bk6ivAAAAAAAAAAAZuZ7ukQz8z04rHq8gtSHvpqjxzxSafG7AAAAAAAAAAANrVM+25E3Pz5uRr0WTNC+GqH4PXP/Er0AAAAAAAAAAABGZTxMenM/EyaFPBOh877MBu08nt+mvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEE06o2n8+MAWyUTRMBjAF0lEdAu2MjUx20RnV9lChoBkdAb4TwhnrY5GgHTQ4BaAhHQLtjR1uR9w51fZQoaAZHQHEdm8274BVoB0v3aAhHQLtjoRjSXt11fZQoaAZHQHAQEkWykbhoB00mAWgIR0C7Y7QA2hqTdX2UKGgGR0BxMJCtzS1FaAdL9WgIR0C7ZDTR6WxAdX2UKGgGR0BxhWxJNCZ4aAdNCQFoCEdAu2RGukk8inV9lChoBkdAbjRfw7T2FmgHTQgBaAhHQLtkYBBRhtt1fZQoaAZHQHDcT8LrontoB0vraAhHQLtkwVrAP/d1fZQoaAZHQG2aCYTj/+9oB00dAWgIR0C7ZM4ISlFddX2UKGgGR0BxxfEIgNgCaAdNdQFoCEdAu2UV2+wkgXV9lChoBkdAb92sGPgeimgHS/toCEdAu2UXSb6P83V9lChoBkdAbr7uO0b962gHS/loCEdAu2VG+XZ5A3V9lChoBkdAcQ7UJfICEGgHS+loCEdAu2Vw70WdmXV9lChoBkdAcDvDjin5z2gHS+toCEdAu2WbeXRgJHV9lChoBkdAbzsBOpKjBWgHS/5oCEdAu2X/E/B3zXV9lChoBkdAcE9Riw0O3GgHTR0BaAhHQLtmD4agmJF1fZQoaAZHQHGqHko4MnZoB0v0aAhHQLtmSJFLFn91fZQoaAZHQHA6iM98qnZoB00LAWgIR0C7ZpdAgPmQdX2UKGgGR0BuHG/FirksaAdNVgFoCEdAu2bOeqaPS3V9lChoBkdAcWY7kXDWLGgHS91oCEdAu2clZSvTw3V9lChoBkdAbVnM2WIGhWgHTR0BaAhHQLtnYXC0ngJ1fZQoaAZHQHG+0Dp1RtRoB00WAWgIR0C7Z2YptrKvdX2UKGgGR0BxGK/i5uqFaAdNNQFoCEdAu2eb2zv7WXV9lChoBkdAblomnfl6q2gHS/ZoCEdAu2fIPTXrdHV9lChoBkdAZ5xG6wt8NWgHTV0CaAhHQLtoKH+6y0N1fZQoaAZHQG0FdORDCxhoB0v6aAhHQLtoOUypJf91fZQoaAZHQFTuzyBkI5ZoB0vGaAhHQLtoSmlZX+51fZQoaAZHQHAdpeE7GNtoB00PAWgIR0C7aErq6e5GdX2UKGgGR0BzVsQrc0tRaAdNSgFoCEdAu2h+rksBhnV9lChoBkdAcO9J66asqGgHTTMBaAhHQLtolKneizt1fZQoaAZHQG/xhWxQizNoB0vjaAhHQLtoo6zVtoB1fZQoaAZHQHCf5Cv5gw5oB00OAWgIR0C7aL3CKrJbdX2UKGgGR0Btgt1SwW30aAdL92gIR0C7aTuzyBkJdX2UKGgGR0BwGtEsrd30aAdL7WgIR0C7aby0jTrndX2UKGgGR0Bw3CpwS8J2aAdNFgFoCEdAu2oOWu5jIHV9lChoBkdAciqB4D9wWGgHTRkBaAhHQLtq0yP+4sp1fZQoaAZHQDIqRaHKwINoB0vEaAhHQLtq/Vgx8D11fZQoaAZHQHB5JGOMl1NoB00QAWgIR0C7awjfek57dX2UKGgGR0Bve767/XGwaAdNAAFoCEdAu2sTwVj7RHV9lChoBkdAcmIoFmnO0WgHTSgBaAhHQLtrbgte2NN1fZQoaAZHQHNdhGx2SuBoB0vhaAhHQLtrgTj/+851fZQoaAZHQG2Kh3Roh6loB0vzaAhHQLtrzsMRYih1fZQoaAZHQHFaMXJo0yhoB00BAWgIR0C7a9bjPv8ZdX2UKGgGR0BwDEQcxTKlaAdNIgFoCEdAu2vcE7nxKHV9lChoBkdAb7arhBJI2GgHS/ZoCEdAu3IBe5WilHV9lChoBkdAceXcebNKRWgHTRQBaAhHQLtyH0zTF2p1fZQoaAZHQHKYZnlGPPtoB00PAWgIR0C7ch5NoJzDdX2UKGgGR0Bx8bErGza9aAdL62gIR0C7ckRJqZc+dX2UKGgGR0BuxTMxGlQ/aAdNAwFoCEdAu3LavwEyL3V9lChoBkdAMRCxFAmiQGgHS9FoCEdAu3MZuR9w33V9lChoBkdAcbaIDoyKvWgHTTUBaAhHQLtzsWAf+0h1fZQoaAZHQG/bzguRLbpoB00NAWgIR0C7c//cer+6dX2UKGgGR0BwNvWXkYGdaAdL+mgIR0C7dBmgWac7dX2UKGgGR0BvgLg88s+WaAdNGAFoCEdAu3Qfehwl0HV9lChoBkdAbvzRE4Nqg2gHTRoBaAhHQLt0NzPKMeh1fZQoaAZHQG5J5NwiqyZoB00AAWgIR0C7dD6ews5GdX2UKGgGR0BwXTA8B+4LaAdL+2gIR0C7dGv7el9CdX2UKGgGR0Bw/YecQRPHaAdNEwFoCEdAu3SijtXxOXV9lChoBkdAbiwfFJg9eWgHTSQBaAhHQLt02Qw9JSR1fZQoaAZHQHAH6dtl7MRoB0voaAhHQLt02OVxCIF1fZQoaAZHQG2mX6InBtVoB00SAWgIR0C7dRx0MgEEdX2UKGgGR0BKUsxO+IuXaAdLr2gIR0C7dSRXwLE2dX2UKGgGR0BvtQzWPLgXaAdNIAFoCEdAu3VCMhouf3V9lChoBkdAcNtK77Kq42gHTQkBaAhHQLt10dYGMXJ1fZQoaAZHQHGlSOaOPvNoB0voaAhHQLt22Fy7wrl1fZQoaAZHQEDq/20zCUJoB0vXaAhHQLt22IjGDL91fZQoaAZHQHFM801qFh5oB0vxaAhHQLt274+r2g51fZQoaAZHQHC2p2U0Nz9oB00BAWgIR0C7dwUfDDTCdX2UKGgGR0BuWf8uSOinaAdNGAFoCEdAu3c9jUd7wHV9lChoBkdAcREUHIIWxmgHTTMBaAhHQLt3SMDfWMF1fZQoaAZHQHE/tJOFg2JoB00hAWgIR0C7d3cw+MZQdX2UKGgGR0BuSEg8r7O3aAdL7GgIR0C7d6GmUGFBdX2UKGgGR0Bw/aIP9UCJaAdNDAFoCEdAu3fEG9pRGnV9lChoBkdActbWN3np0WgHS99oCEdAu3fJg6U7jnV9lChoBkdAcRYBAOavzWgHS/xoCEdAu3gXS1E3KnV9lChoBkdAcdWkOqebu2gHTQIBaAhHQLt4TtFa0Qd1fZQoaAZHQHFi/NmlImRoB00zAWgIR0C7eGuMZP2xdX2UKGgGR0BwPmmBOHnEaAdL9WgIR0C7eMX49HMEdX2UKGgGR0BQaFiSaEzwaAdLwmgIR0C7eeLulXRxdX2UKGgGR0BvGwMH8jzJaAdL+mgIR0C7eggxi5NHdX2UKGgGR0BxT8JTl1bJaAdL82gIR0C7enJuqFRHdX2UKGgGR0BvBhIczZYgaAdNHAFoCEdAu3qoQnQY13V9lChoBkdAcYnU0Nz8xmgHTQ4BaAhHQLt6pm+Cbtt1fZQoaAZHQHJJu6VdHDtoB00YAWgIR0C7erFIEr5JdX2UKGgGR0A84yoGY8dQaAdN6ANoCEdAu3sPAWSEDnV9lChoBkdAbOoWqtHQQmgHS/NoCEdAu3sn7UG3WnV9lChoBkdAcBB20iQkomgHTR4BaAhHQLt7LLofSx91fZQoaAZHQHKl+8Gs3hpoB00QAWgIR0C7e1sa0hNedX2UKGgGR0BtJcvTPSlWaAdNGgFoCEdAu3uyGCZnc3V9lChoBkdAcMhhHbypaWgHTQoBaAhHQLt74c9GI9F1fZQoaAZHQG3h/95yEL9oB0vsaAhHQLt74IvJzT51fZQoaAZHQHDakWl/H5toB0voaAhHQLt8QfwZwXJ1fZQoaAZHQHJ7BrrPdEdoB00jAWgIR0C7fIECmuTzdX2UKGgGR0ByIvsXzlLfaAdL2GgIR0C7fULXpW3jdX2UKGgGR0BPAcM3IdU9aAdLv2gIR0C7fWipWFN+dX2UKGgGR0BxRNyS3b22aAdNFQFoCEdAu34hxXGOuXV9lChoBkdAcW0QzUI9kmgHTQEBaAhHQLt+VDiwSrZ1fZQoaAZHQG9o3cQAdXFoB0vwaAhHQLt+sCZF5Od1fZQoaAZHQHAFkb1h9b5oB00OAWgIR0C7fsEH2RJVdX2UKGgGR0Bv/f3UQTVUaAdNCwFoCEdAu37A7p3X7XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 1e-05,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
LunarLander-v2-PPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:252daa873c47363f2edd1f12988533b9d9515d6e6154e725af62138682fbc94f
3
+ size 87545
LunarLander-v2-PPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa7e64dada555f7bd8020967ffd20891c0319cf3d3fb25753a09cc6ac4e5c51
3
+ size 43201
LunarLander-v2-PPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2-PPO/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 272.59 +/- 16.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78cb689e2950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78cb689e29e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78cb689e2a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78cb689e2b00>", "_build": "<function ActorCriticPolicy._build at 0x78cb689e2b90>", "forward": "<function ActorCriticPolicy.forward at 0x78cb689e2c20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78cb689e2cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78cb689e2d40>", "_predict": "<function ActorCriticPolicy._predict at 0x78cb689e2dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78cb689e2e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78cb689e2ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78cb689e2f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78cb689db3c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690874690659532702, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMBQLyHTK4/A94svifPyL5Y+YK8xh38vAAAAAAAAAAAmN6HvrNfAD8UWxU+IXG0vqy9Kr0mzl48AAAAAAAAAACAiyC+HwCbPPMvTj4pGTq+7KFuPN+8tjwAAAAAAAAAAI0pxr3IQeE7W0A+vC21KL7U5DA9bGaHvQAAAAAAAAAA01+ovpSJE70Dq9+9U5WzvKsuQT7lEeA8AAAAAAAAAABatIg9KLmsP9iyHj/yLcm+VOUiPBu4Uz4AAAAAAAAAALoQLb6f1fA88N/oPYApEr5jw6K8g0PovAAAAAAAAAAAGgdbvXc9uz8GMT+/T/9/PtnwxDwtk2q8AAAAAAAAAADNeKq8FJSUugK3mri8K/ez+38MOkFosTcAAIA/AACAPwDoL732NHS6DmeQu6mkjDzyYs864C91vQAAgD8AAIA/LfvLvuW9mb19Szy9cQ+1uw7hTT6YI2C8AACAPwAAgD/aTka+Jyq5P4aVIL8dBq++r/Ssvu4EGr4AAAAAAAAAAPOpkT2Oncc90xXlvRYPOL5tQoQ9bk6ivAAAAAAAAAAAZuZ7ukQz8z04rHq8gtSHvpqjxzxSafG7AAAAAAAAAAANrVM+25E3Pz5uRr0WTNC+GqH4PXP/Er0AAAAAAAAAAABGZTxMenM/EyaFPBOh877MBu08nt+mvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEE06o2n8+MAWyUTRMBjAF0lEdAu2MjUx20RnV9lChoBkdAb4TwhnrY5GgHTQ4BaAhHQLtjR1uR9w51fZQoaAZHQHEdm8274BVoB0v3aAhHQLtjoRjSXt11fZQoaAZHQHAQEkWykbhoB00mAWgIR0C7Y7QA2hqTdX2UKGgGR0BxMJCtzS1FaAdL9WgIR0C7ZDTR6WxAdX2UKGgGR0BxhWxJNCZ4aAdNCQFoCEdAu2RGukk8inV9lChoBkdAbjRfw7T2FmgHTQgBaAhHQLtkYBBRhtt1fZQoaAZHQHDcT8LrontoB0vraAhHQLtkwVrAP/d1fZQoaAZHQG2aCYTj/+9oB00dAWgIR0C7ZM4ISlFddX2UKGgGR0BxxfEIgNgCaAdNdQFoCEdAu2UV2+wkgXV9lChoBkdAb92sGPgeimgHS/toCEdAu2UXSb6P83V9lChoBkdAbr7uO0b962gHS/loCEdAu2VG+XZ5A3V9lChoBkdAcQ7UJfICEGgHS+loCEdAu2Vw70WdmXV9lChoBkdAcDvDjin5z2gHS+toCEdAu2WbeXRgJHV9lChoBkdAbzsBOpKjBWgHS/5oCEdAu2X/E/B3zXV9lChoBkdAcE9Riw0O3GgHTR0BaAhHQLtmD4agmJF1fZQoaAZHQHGqHko4MnZoB0v0aAhHQLtmSJFLFn91fZQoaAZHQHA6iM98qnZoB00LAWgIR0C7ZpdAgPmQdX2UKGgGR0BuHG/FirksaAdNVgFoCEdAu2bOeqaPS3V9lChoBkdAcWY7kXDWLGgHS91oCEdAu2clZSvTw3V9lChoBkdAbVnM2WIGhWgHTR0BaAhHQLtnYXC0ngJ1fZQoaAZHQHG+0Dp1RtRoB00WAWgIR0C7Z2YptrKvdX2UKGgGR0BxGK/i5uqFaAdNNQFoCEdAu2eb2zv7WXV9lChoBkdAblomnfl6q2gHS/ZoCEdAu2fIPTXrdHV9lChoBkdAZ5xG6wt8NWgHTV0CaAhHQLtoKH+6y0N1fZQoaAZHQG0FdORDCxhoB0v6aAhHQLtoOUypJf91fZQoaAZHQFTuzyBkI5ZoB0vGaAhHQLtoSmlZX+51fZQoaAZHQHAdpeE7GNtoB00PAWgIR0C7aErq6e5GdX2UKGgGR0BzVsQrc0tRaAdNSgFoCEdAu2h+rksBhnV9lChoBkdAcO9J66asqGgHTTMBaAhHQLtolKneizt1fZQoaAZHQG/xhWxQizNoB0vjaAhHQLtoo6zVtoB1fZQoaAZHQHCf5Cv5gw5oB00OAWgIR0C7aL3CKrJbdX2UKGgGR0Btgt1SwW30aAdL92gIR0C7aTuzyBkJdX2UKGgGR0BwGtEsrd30aAdL7WgIR0C7aby0jTrndX2UKGgGR0Bw3CpwS8J2aAdNFgFoCEdAu2oOWu5jIHV9lChoBkdAciqB4D9wWGgHTRkBaAhHQLtq0yP+4sp1fZQoaAZHQDIqRaHKwINoB0vEaAhHQLtq/Vgx8D11fZQoaAZHQHB5JGOMl1NoB00QAWgIR0C7awjfek57dX2UKGgGR0Bve767/XGwaAdNAAFoCEdAu2sTwVj7RHV9lChoBkdAcmIoFmnO0WgHTSgBaAhHQLtrbgte2NN1fZQoaAZHQHNdhGx2SuBoB0vhaAhHQLtrgTj/+851fZQoaAZHQG2Kh3Roh6loB0vzaAhHQLtrzsMRYih1fZQoaAZHQHFaMXJo0yhoB00BAWgIR0C7a9bjPv8ZdX2UKGgGR0BwDEQcxTKlaAdNIgFoCEdAu2vcE7nxKHV9lChoBkdAb7arhBJI2GgHS/ZoCEdAu3IBe5WilHV9lChoBkdAceXcebNKRWgHTRQBaAhHQLtyH0zTF2p1fZQoaAZHQHKYZnlGPPtoB00PAWgIR0C7ch5NoJzDdX2UKGgGR0Bx8bErGza9aAdL62gIR0C7ckRJqZc+dX2UKGgGR0BuxTMxGlQ/aAdNAwFoCEdAu3LavwEyL3V9lChoBkdAMRCxFAmiQGgHS9FoCEdAu3MZuR9w33V9lChoBkdAcbaIDoyKvWgHTTUBaAhHQLtzsWAf+0h1fZQoaAZHQG/bzguRLbpoB00NAWgIR0C7c//cer+6dX2UKGgGR0BwNvWXkYGdaAdL+mgIR0C7dBmgWac7dX2UKGgGR0BvgLg88s+WaAdNGAFoCEdAu3Qfehwl0HV9lChoBkdAbvzRE4Nqg2gHTRoBaAhHQLt0NzPKMeh1fZQoaAZHQG5J5NwiqyZoB00AAWgIR0C7dD6ews5GdX2UKGgGR0BwXTA8B+4LaAdL+2gIR0C7dGv7el9CdX2UKGgGR0Bw/YecQRPHaAdNEwFoCEdAu3SijtXxOXV9lChoBkdAbiwfFJg9eWgHTSQBaAhHQLt02Qw9JSR1fZQoaAZHQHAH6dtl7MRoB0voaAhHQLt02OVxCIF1fZQoaAZHQG2mX6InBtVoB00SAWgIR0C7dRx0MgEEdX2UKGgGR0BKUsxO+IuXaAdLr2gIR0C7dSRXwLE2dX2UKGgGR0BvtQzWPLgXaAdNIAFoCEdAu3VCMhouf3V9lChoBkdAcNtK77Kq42gHTQkBaAhHQLt10dYGMXJ1fZQoaAZHQHGlSOaOPvNoB0voaAhHQLt22Fy7wrl1fZQoaAZHQEDq/20zCUJoB0vXaAhHQLt22IjGDL91fZQoaAZHQHFM801qFh5oB0vxaAhHQLt274+r2g51fZQoaAZHQHC2p2U0Nz9oB00BAWgIR0C7dwUfDDTCdX2UKGgGR0BuWf8uSOinaAdNGAFoCEdAu3c9jUd7wHV9lChoBkdAcREUHIIWxmgHTTMBaAhHQLt3SMDfWMF1fZQoaAZHQHE/tJOFg2JoB00hAWgIR0C7d3cw+MZQdX2UKGgGR0BuSEg8r7O3aAdL7GgIR0C7d6GmUGFBdX2UKGgGR0Bw/aIP9UCJaAdNDAFoCEdAu3fEG9pRGnV9lChoBkdActbWN3np0WgHS99oCEdAu3fJg6U7jnV9lChoBkdAcRYBAOavzWgHS/xoCEdAu3gXS1E3KnV9lChoBkdAcdWkOqebu2gHTQIBaAhHQLt4TtFa0Qd1fZQoaAZHQHFi/NmlImRoB00zAWgIR0C7eGuMZP2xdX2UKGgGR0BwPmmBOHnEaAdL9WgIR0C7eMX49HMEdX2UKGgGR0BQaFiSaEzwaAdLwmgIR0C7eeLulXRxdX2UKGgGR0BvGwMH8jzJaAdL+mgIR0C7eggxi5NHdX2UKGgGR0BxT8JTl1bJaAdL82gIR0C7enJuqFRHdX2UKGgGR0BvBhIczZYgaAdNHAFoCEdAu3qoQnQY13V9lChoBkdAcYnU0Nz8xmgHTQ4BaAhHQLt6pm+Cbtt1fZQoaAZHQHJJu6VdHDtoB00YAWgIR0C7erFIEr5JdX2UKGgGR0A84yoGY8dQaAdN6ANoCEdAu3sPAWSEDnV9lChoBkdAbOoWqtHQQmgHS/NoCEdAu3sn7UG3WnV9lChoBkdAcBB20iQkomgHTR4BaAhHQLt7LLofSx91fZQoaAZHQHKl+8Gs3hpoB00QAWgIR0C7e1sa0hNedX2UKGgGR0BtJcvTPSlWaAdNGgFoCEdAu3uyGCZnc3V9lChoBkdAcMhhHbypaWgHTQoBaAhHQLt74c9GI9F1fZQoaAZHQG3h/95yEL9oB0vsaAhHQLt74IvJzT51fZQoaAZHQHDakWl/H5toB0voaAhHQLt8QfwZwXJ1fZQoaAZHQHJ7BrrPdEdoB00jAWgIR0C7fIECmuTzdX2UKGgGR0ByIvsXzlLfaAdL2GgIR0C7fULXpW3jdX2UKGgGR0BPAcM3IdU9aAdLv2gIR0C7fWipWFN+dX2UKGgGR0BxRNyS3b22aAdNFQFoCEdAu34hxXGOuXV9lChoBkdAcW0QzUI9kmgHTQEBaAhHQLt+VDiwSrZ1fZQoaAZHQG9o3cQAdXFoB0vwaAhHQLt+sCZF5Od1fZQoaAZHQHAFkb1h9b5oB00OAWgIR0C7fsEH2RJVdX2UKGgGR0Bv/f3UQTVUaAdNCwFoCEdAu37A7p3X7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 1e-05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (173 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.59006429999994, "std_reward": 16.467039574277205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-01T08:13:52.145593"}