--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5474 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0195 | 1.0 | 113 | 1.8110 | 0.49 | | 1.3352 | 2.0 | 226 | 1.2507 | 0.65 | | 1.0411 | 3.0 | 339 | 0.9619 | 0.77 | | 0.8179 | 4.0 | 452 | 0.8647 | 0.71 | | 0.699 | 5.0 | 565 | 0.7015 | 0.79 | | 0.4359 | 6.0 | 678 | 0.6897 | 0.78 | | 0.4689 | 7.0 | 791 | 0.5793 | 0.84 | | 0.2185 | 8.0 | 904 | 0.5124 | 0.85 | | 0.2557 | 9.0 | 1017 | 0.5593 | 0.83 | | 0.1715 | 10.0 | 1130 | 0.5474 | 0.83 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1