Upload 3 files
Browse files- config.json +3 -3
- configuration_minicpm_reranker.py +1 -1
- modeling_minicpm.py +1 -123
config.json
CHANGED
@@ -6,9 +6,9 @@
|
|
6 |
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
"auto_map": {
|
9 |
-
"AutoConfig": "cfli/MiniCPM-2B-reranker--configuration_minicpm_reranker.
|
10 |
-
"LayerWiseMiniCPMModel": "cfli/MiniCPM-2B-reranker--modeling_minicpm.
|
11 |
-
"LayerWiseMiniCPMForCausalLM": "cfli/MiniCPM-2B-reranker--modeling_minicpm.
|
12 |
},
|
13 |
"bos_token_id": 1,
|
14 |
"dim_model_base": 256,
|
|
|
6 |
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "cfli/MiniCPM-2B-reranker--configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
|
10 |
+
"LayerWiseMiniCPMModel": "cfli/MiniCPM-2B-reranker--modeling_minicpm.LayerWiseMiniCPMModel",
|
11 |
+
"LayerWiseMiniCPMForCausalLM": "cfli/MiniCPM-2B-reranker--modeling_minicpm.LayerWiseMiniCPMForCausalLM"
|
12 |
},
|
13 |
"bos_token_id": 1,
|
14 |
"dim_model_base": 256,
|
configuration_minicpm_reranker.py
CHANGED
@@ -28,7 +28,7 @@ logger = logging.get_logger(__name__)
|
|
28 |
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
|
30 |
|
31 |
-
class
|
32 |
r"""
|
33 |
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
34 |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
|
28 |
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
|
30 |
|
31 |
+
class LayerWiseMiniCPMConfig(PretrainedConfig):
|
32 |
r"""
|
33 |
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
34 |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
modeling_minicpm.py
CHANGED
@@ -1491,126 +1491,4 @@ class LayerWiseMiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
1491 |
if len(matches) > 0:
|
1492 |
response = matches[0]
|
1493 |
history.append({"role": "assistant", "content": response})
|
1494 |
-
return response, history
|
1495 |
-
|
1496 |
-
|
1497 |
-
@add_start_docstrings(
|
1498 |
-
"""
|
1499 |
-
The MiniCPM Model transformer with a sequence classification head on top (linear layer).
|
1500 |
-
|
1501 |
-
[`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1502 |
-
(e.g. GPT-2) do.
|
1503 |
-
|
1504 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1505 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1506 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1507 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1508 |
-
each row of the batch).
|
1509 |
-
""",
|
1510 |
-
MINICPM_START_DOCSTRING,
|
1511 |
-
)
|
1512 |
-
class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
|
1513 |
-
def __init__(self, config):
|
1514 |
-
super().__init__(config)
|
1515 |
-
self.num_labels = config.num_labels
|
1516 |
-
self.model = MiniCPMModel(config)
|
1517 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1518 |
-
|
1519 |
-
# Initialize weights and apply final processing
|
1520 |
-
self.post_init()
|
1521 |
-
|
1522 |
-
def get_input_embeddings(self):
|
1523 |
-
return self.model.embed_tokens
|
1524 |
-
|
1525 |
-
def set_input_embeddings(self, value):
|
1526 |
-
self.model.embed_tokens = value
|
1527 |
-
|
1528 |
-
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1529 |
-
def forward(
|
1530 |
-
self,
|
1531 |
-
input_ids: torch.LongTensor = None,
|
1532 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1533 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1534 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1535 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1536 |
-
labels: Optional[torch.LongTensor] = None,
|
1537 |
-
use_cache: Optional[bool] = None,
|
1538 |
-
output_attentions: Optional[bool] = None,
|
1539 |
-
output_hidden_states: Optional[bool] = None,
|
1540 |
-
return_dict: Optional[bool] = None,
|
1541 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1542 |
-
r"""
|
1543 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1544 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1545 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1546 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1547 |
-
"""
|
1548 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1549 |
-
|
1550 |
-
transformer_outputs = self.model(
|
1551 |
-
input_ids,
|
1552 |
-
attention_mask=attention_mask,
|
1553 |
-
position_ids=position_ids,
|
1554 |
-
past_key_values=past_key_values,
|
1555 |
-
inputs_embeds=inputs_embeds,
|
1556 |
-
use_cache=use_cache,
|
1557 |
-
output_attentions=output_attentions,
|
1558 |
-
output_hidden_states=output_hidden_states,
|
1559 |
-
return_dict=return_dict,
|
1560 |
-
)
|
1561 |
-
hidden_states = transformer_outputs[0]
|
1562 |
-
logits = self.score(hidden_states)
|
1563 |
-
|
1564 |
-
if input_ids is not None:
|
1565 |
-
batch_size = input_ids.shape[0]
|
1566 |
-
else:
|
1567 |
-
batch_size = inputs_embeds.shape[0]
|
1568 |
-
|
1569 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
1570 |
-
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1571 |
-
if self.config.pad_token_id is None:
|
1572 |
-
sequence_lengths = -1
|
1573 |
-
else:
|
1574 |
-
if input_ids is not None:
|
1575 |
-
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1576 |
-
logits.device
|
1577 |
-
)
|
1578 |
-
else:
|
1579 |
-
sequence_lengths = -1
|
1580 |
-
|
1581 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1582 |
-
|
1583 |
-
loss = None
|
1584 |
-
if labels is not None:
|
1585 |
-
labels = labels.to(logits.device)
|
1586 |
-
if self.config.problem_type is None:
|
1587 |
-
if self.num_labels == 1:
|
1588 |
-
self.config.problem_type = "regression"
|
1589 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1590 |
-
self.config.problem_type = "single_label_classification"
|
1591 |
-
else:
|
1592 |
-
self.config.problem_type = "multi_label_classification"
|
1593 |
-
|
1594 |
-
if self.config.problem_type == "regression":
|
1595 |
-
loss_fct = MSELoss()
|
1596 |
-
if self.num_labels == 1:
|
1597 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1598 |
-
else:
|
1599 |
-
loss = loss_fct(pooled_logits, labels)
|
1600 |
-
elif self.config.problem_type == "single_label_classification":
|
1601 |
-
loss_fct = CrossEntropyLoss()
|
1602 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1603 |
-
elif self.config.problem_type == "multi_label_classification":
|
1604 |
-
loss_fct = BCEWithLogitsLoss()
|
1605 |
-
loss = loss_fct(pooled_logits, labels)
|
1606 |
-
if not return_dict:
|
1607 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
1608 |
-
return ((loss,) + output) if loss is not None else output
|
1609 |
-
|
1610 |
-
return SequenceClassifierOutputWithPast(
|
1611 |
-
loss=loss,
|
1612 |
-
logits=pooled_logits,
|
1613 |
-
past_key_values=transformer_outputs.past_key_values,
|
1614 |
-
hidden_states=transformer_outputs.hidden_states,
|
1615 |
-
attentions=transformer_outputs.attentions,
|
1616 |
-
)
|
|
|
1491 |
if len(matches) > 0:
|
1492 |
response = matches[0]
|
1493 |
history.append({"role": "assistant", "content": response})
|
1494 |
+
return response, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|