Built with Axolotl

See axolotl config

axolotl version: 0.8.1

base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: 2_70B_benign_chem_ft_h100
output_dir: ./outputs/out/2_70B_benign_chem_ft_h100
hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry
hub_strategy: end

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: benign_1762_simple_train.jsonl
    type: chat_template
    split: train
    roles_to_train: ["assistant"]
dataset_prepared_path: last_run_prepared
test_datasets:
  - path: benign_196_simple_val.jsonl
    type: chat_template
    split: train
save_safetensors: true

sequence_len: 2250
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: finetune-chem
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: true
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry

This model is a fine-tuned version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned on the benign_1762_simple_train.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.6111 0.0303 1 0.6087
0.5938 0.3333 11 0.6038
0.5413 0.6667 22 0.5524
0.5106 1.0 33 0.5338

Framework versions

  • PEFT 0.15.1
  • Transformers 4.51.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry

Evaluation results