cgifbribcgfbi commited on
Commit
f8e3da5
·
verified ·
1 Parent(s): 02baccf

Model save

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.3
4
+ base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - dset_o4_mini_5000.jsonl
10
+ model-index:
11
+ - name: Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-o4-v2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.8.1`
22
+ ```yaml
23
+ base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ adapter: qlora
27
+ wandb_name: o4_v2_axolotl_ft
28
+ output_dir: ./outputs/out/o4_v2_axolotl_ft
29
+ hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-o4-v2
30
+ hub_strategy: every_save
31
+ # resume_from_checkpoint: ./outputs/out/5_70B_axolotl_ft/checkpoint-72
32
+
33
+ tokenizer_type: AutoTokenizer
34
+ push_dataset_to_hub:
35
+ strict: false
36
+
37
+ datasets:
38
+ - path: dset_o4_mini_5000.jsonl
39
+ type: chat_template
40
+ split: train
41
+
42
+ dataset_prepared_path: last_run_prepared
43
+ val_set_size: 0.04
44
+ # test_datasets:
45
+ # - path: 5000_benign_val.json
46
+ # type: chat_template
47
+ # split: train
48
+ save_safetensors: true
49
+
50
+ sequence_len: 3000
51
+ sample_packing: true
52
+ pad_to_sequence_len: true
53
+
54
+ lora_r: 64
55
+ lora_alpha: 32
56
+ lora_dropout: 0.05
57
+ lora_target_modules:
58
+ lora_target_linear: true
59
+
60
+ wandb_mode:
61
+ wandb_project: finetune-chem
62
+ wandb_entity: gpoisjgqetpadsfke
63
+ wandb_watch:
64
+ wandb_run_id:
65
+ wandb_log_model:
66
+
67
+ gradient_accumulation_steps: 1
68
+ micro_batch_size: 4
69
+ num_epochs: 4
70
+ optimizer: adamw_torch_fused
71
+ lr_scheduler: cosine
72
+ learning_rate: 0.00002
73
+
74
+ train_on_inputs: false
75
+ group_by_length: true
76
+ bf16: true
77
+ tf32: true
78
+
79
+ gradient_checkpointing: true
80
+ gradient_checkpointing_kwargs:
81
+ use_reentrant: true
82
+ logging_steps: 1
83
+ flash_attention: true
84
+
85
+ warmup_steps: 10
86
+ evals_per_epoch: 3
87
+ saves_per_epoch: 1
88
+ weight_decay: 0.01
89
+ fsdp:
90
+ - full_shard
91
+ - auto_wrap
92
+ fsdp_config:
93
+ fsdp_limit_all_gathers: true
94
+ fsdp_sync_module_states: true
95
+ fsdp_offload_params: false
96
+ fsdp_use_orig_params: false
97
+ fsdp_cpu_ram_efficient_loading: true
98
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
99
+ fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
100
+ fsdp_state_dict_type: FULL_STATE_DICT
101
+ fsdp_sharding_strategy: FULL_SHARD
102
+ special_tokens:
103
+ pad_token: <|finetune_right_pad_id|>
104
+ ```
105
+
106
+ </details><br>
107
+
108
+ # Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-o4-v2
109
+
110
+ This model is a fine-tuned version of [huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned](https://huggingface.co/huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned) on the dset_o4_mini_5000.jsonl dataset.
111
+ It achieves the following results on the evaluation set:
112
+ - Loss: 0.6710
113
+
114
+ ## Model description
115
+
116
+ More information needed
117
+
118
+ ## Intended uses & limitations
119
+
120
+ More information needed
121
+
122
+ ## Training and evaluation data
123
+
124
+ More information needed
125
+
126
+ ## Training procedure
127
+
128
+ ### Training hyperparameters
129
+
130
+ The following hyperparameters were used during training:
131
+ - learning_rate: 2e-05
132
+ - train_batch_size: 4
133
+ - eval_batch_size: 4
134
+ - seed: 42
135
+ - distributed_type: multi-GPU
136
+ - num_devices: 4
137
+ - total_train_batch_size: 16
138
+ - total_eval_batch_size: 16
139
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 10
142
+ - num_epochs: 4.0
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 1.1459 | 0.0059 | 1 | 1.0945 |
149
+ | 0.8244 | 0.3353 | 57 | 0.8049 |
150
+ | 0.782 | 0.6706 | 114 | 0.7394 |
151
+ | 0.7077 | 1.0059 | 171 | 0.7135 |
152
+ | 0.673 | 1.3412 | 228 | 0.6990 |
153
+ | 0.6982 | 1.6765 | 285 | 0.6888 |
154
+ | 0.6577 | 2.0118 | 342 | 0.6821 |
155
+ | 0.6612 | 2.3471 | 399 | 0.6783 |
156
+ | 0.6757 | 2.6824 | 456 | 0.6745 |
157
+ | 0.665 | 3.0176 | 513 | 0.6722 |
158
+ | 0.6427 | 3.3529 | 570 | 0.6716 |
159
+ | 0.6027 | 3.6882 | 627 | 0.6710 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.15.1
165
+ - Transformers 4.51.0
166
+ - Pytorch 2.5.1+cu124
167
+ - Datasets 3.5.0
168
+ - Tokenizers 0.21.1