--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python import gymnasium as gym from huggingface_sb3 import load_from_hub import numpy as np import pickle # Load the Q table env_name = "FrozenLake-v1" model_name = "q-FrozenLake-v1-4x4-noSlippery" model_path = load_from_hub(repo_id="ch-bz/" + model_name, filename="q-learning.pkl") Qtable = pickle.load(open(model_path, "rb"))["qtable"] # Run the demonstration of the result env = gym.make("FrozenLake-v1", map_name="4x4", is_slippery=False, render_mode="human") state, info = env.reset() while True: action = np.argmax(Qtable[state][:]) state, reward, terminated, truncated, info = env.step(action) env.render() if terminated or truncated: state, info = env.reset() ```