File size: 13,053 Bytes
951df8c
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc66127a710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc66127a7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc66127a830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc66127a8c0>", "_build": "<function ActorCriticPolicy._build at 0x7fc66127a950>", "forward": "<function ActorCriticPolicy.forward at 0x7fc66127a9e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc66127aa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc66127ab00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc66127ab90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc66127ac20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc66127acb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc66127ad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc66127dac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688852686171059714, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPuChL5ySZA/mH/1vowRzb4QvMu+FgpEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH+TMJQcgiMAWyUS/+MAXSUR0CbZjsCT2WZdX2UKGgGR0Bu6TGFSKm9aAdL72gIR0CbaCEUCaJAdX2UKGgGR0BwQx5+pfhNaAdL4GgIR0Cba6UJOWSmdX2UKGgGR0BwYDYmLLpzaAdNNgFoCEdAm24j/EOy3XV9lChoBkdAccTi+tbLU2gHTR0BaAhHQJtwb7Q9ic51fZQoaAZHQG8xKhtcfNloB00kAWgIR0Cbcy1BMSK4dX2UKGgGR0BwpnbL2YfGaAdNHQFoCEdAm3TDSCvovHV9lChoBkdAb8RMvh60IGgHS9toCEdAm3Xw/5ckdHV9lChoBkdAcPCCXQdCFGgHTQsBaAhHQJt3avovBad1fZQoaAZHQG+wgq3EycloB0v6aAhHQJt5/Cl7+kx1fZQoaAZHQHAJE7nxJ/ZoB0v/aAhHQJt7WoxYaHd1fZQoaAZHQHG5GMS9M9NoB0v5aAhHQJt8v1M/QjV1fZQoaAZHQGzaFotcv/RoB00FAWgIR0CbfjMCLdeqdX2UKGgGR0BxxH9AHE/CaAdL6WgIR0CbgJcriEQHdX2UKGgGR0BvSpmK64DtaAdNDgFoCEdAm4ISjpLVWnV9lChoBkdAbhBOX3QD3mgHTTwBaAhHQJuDyHKwIMV1fZQoaAZHQHCPkoWpIc1oB00KAWgIR0CbhTnBLwnZdX2UKGgGR0BwuAWrOqvNaAdNOQFoCEdAm4gEvCdjG3V9lChoBkdAbzYW8AaNuWgHTR4BaAhHQJuJohzNliB1fZQoaAZHQHDLFfNRm9RoB0vyaAhHQJuK9HlOoHd1fZQoaAZHQEIhdweeWfNoB0u4aAhHQJuL+x8lXzV1fZQoaAZHQCkroIOYplVoB0vYaAhHQJuOWOWBz3h1fZQoaAZHQGsJ9cKPXCloB00PAWgIR0Cbj9vOQhfTdX2UKGgGR0BuYM+FDfFaaAdNAAFoCEdAm5FPGyX2NHV9lChoBkdAbnxfIjnmrGgHTRABaAhHQJuSz3ztkWh1fZQoaAZHQG9oHDBMzuZoB00AAWgIR0CblWNFz+3pdX2UKGgGR8AnBnSv1UVBaAdLoWgIR0Cblj9t/FzddX2UKGgGR0BHTZVGTcIraAdLuGgIR0Cblzqu8scydX2UKGgGR0BxgTXwsoUjaAdNDAFoCEdAm5i43irDInV9lChoBkdAcWSDziCJ42gHTR8BaAhHQJucSUr08Nh1fZQoaAZHQEOX8JD3M6loB0uuaAhHQJudkgow22p1fZQoaAZHQHEy4ywfQrtoB00tAWgIR0Cbn7CsOoYOdX2UKGgGR0BwiOQr+YMOaAdNRQFoCEdAm6I1y7wrlXV9lChoBkdAbu6nkT6BRWgHTRoBaAhHQJumUcYIjW11fZQoaAZHQHDkmFajesRoB00ZAWgIR0CbqKx0MgEEdX2UKGgGR0ByghL6DXe4aAdNQQNoCEdAm68r9qDbrXV9lChoBkdAcgJJ1aGHpWgHTTABaAhHQJuw0NRWLgp1fZQoaAZHQHAQ1i4J/odoB00qAWgIR0Cbsm9pAUtadX2UKGgGR0BxsD5qM3qBaAdNMQFoCEdAm7U1PacqfHV9lChoBkdAch+UG3WnTGgHTTEBaAhHQJu20q0+kgx1fZQoaAZHQG60N+1Bt1poB00GAWgIR0CbuEsWfseGdX2UKGgGR0ByIxXjlxOtaAdL/GgIR0CbuaYnfEXMdX2UKGgGR0BynlHpbD/EaAdL4WgIR0CbvATL4etCdX2UKGgGR0Bws0PAfuCxaAdL8WgIR0CbvWX+ERJ3dX2UKGgGR0BsuFGy5Zr6aAdN9gFoCEdAm8AkrkKeCnV9lChoBkdAcrah1DBuXWgHS/5oCEdAm8KzUutfX3V9lChoBkdAcX2xW1c+q2gHS+doCEdAm8P4Ui6g/XV9lChoBkdAcNAXvphWo2gHS/1oCEdAm8VVNHpbEHV9lChoBkdAcbT5le4TbmgHTTIBaAhHQJvHCjzqbBp1fZQoaAZHwAW8Xm/336BoB0vuaAhHQJvJgkIHC411fZQoaAZHQHEsOaWom5VoB00EAWgIR0CbywaisXBQdX2UKGgGR0ByUjXI2fkFaAdNBgFoCEdAm8yIGdI5HXV9lChoBkdAcTGxyXD3umgHTR4BaAhHQJvOLIKc/dJ1fZQoaAZHQHGcsrVe8f5oB0vsaAhHQJvQoob4rSV1fZQoaAZHQHAmugDifg9oB00xAWgIR0Cb0libUgB+dX2UKGgGR0ByBeF36hxpaAdNBwFoCEdAm9RWEf1YhnV9lChoBkdAcIf+X7cfvGgHTREBaAhHQJvWpyR0U491fZQoaAZHQERmkuYhMaloB0uqaAhHQJvZ3vphWo51fZQoaAZHQG9cUs4DLbJoB0v3aAhHQJvcFfReC051fZQoaAZHQHCPlrdnCfpoB01aAWgIR0Cb3vDdgv12dX2UKGgGR0BOlzNUwSJ1aAdLxGgIR0Cb4G6PKdQPdX2UKGgGR0Brr37k4m1IaAdNCQFoCEdAm+R3rIHTqnV9lChoBkdAcR3RPGhmG2gHS/toCEdAm+aqGYa5w3V9lChoBkdAbu2J1q33H2gHTQwBaAhHQJvpHpA2Q4l1fZQoaAZHQG4wlPJq7AdoB00QAWgIR0Cb64hVENONdX2UKGgGR0Bm02z8gpz+aAdNRAJoCEdAm/J+VX3g1nV9lChoBkdAcgLJbMX7+GgHTUYBaAhHQJv1Pn8sMAp1fZQoaAZHQG4Syv1UVBVoB00PAWgIR0Cb9r+glF+edX2UKGgGR0BwibsE7nxKaAdNHgFoCEdAm/mFlXiiqXV9lChoBkdAcimoPTXrdGgHS/BoCEdAm/rX3lCCz3V9lChoBkdAcaaf+S8rZ2gHS+9oCEdAm/wxKxs2vXV9lChoBkdAcZRwRoRIz2gHS+hoCEdAm/17gKnei3V9lChoBkdAcmA3IdU83mgHS/NoCEdAm//s9bHIZXV9lChoBkdAbvDkI5YHPmgHTSkBaAhHQJwBnRWtEG91fZQoaAZHQHFk5g1FYuFoB0voaAhHQJwC47bL2Yh1fZQoaAZHQG9Cg/keZG9oB00OAWgIR0CcBGt9hJAddX2UKGgGR0BvTlev6j33aAdNKQFoCEdAnAccpb2US3V9lChoBkdAcEEYnv2GqWgHTQIBaAhHQJwIiLhrFfl1fZQoaAZHQG4PU52hZhdoB0v/aAhHQJwJ5bdJrcl1fZQoaAZHQHIVLgXMyJtoB02zAWgIR0CcDXDJlrdndX2UKGgGR0BvuubgCOm0aAdNIQFoCEdAnA8CvPkaM3V9lChoBkdAcTzOAAhjfGgHTTgBaAhHQJwQxb9qDbt1fZQoaAZHQGyhEgwGnoBoB00aAWgIR0CcE2cO9WZJdX2UKGgGR0BuI3alDWsjaAdL+GgIR0CcFMqcVgx8dX2UKGgGR0BwZt2dNFjNaAdL9mgIR0CcFiESM98rdX2UKGgGR0BtiwJLM9r5aAdNBwFoCEdAnBeIa5wwTXV9lChoBkdAcqjCZnctXmgHTTUBaAhHQJwaWY2Kl551fZQoaAZHQHAlYPsiSq5oB0vpaAhHQJwbn1BdD6Z1fZQoaAZHQG7QSULUkOZoB00HAWgIR0CcHR96C17ZdX2UKGgGR0BxkfZuhsZYaAdL/2gIR0CcHvdzXBgvdX2UKGgGR0BuedD4QBgeaAdNFwFoCEdAnCJga72+PHV9lChoBkdAcOXBTXJ5mmgHTXsBaAhHQJwlFpYcNpd1fZQoaAZHQG/HEn9ehPFoB00MAWgIR0CcJ0QIUrTZdX2UKGgGR0BxzjatcObzaAdNPwFoCEdAnCuRBE8aGnV9lChoBkdAcVUWoFV1fWgHTRkBaAhHQJwt5hvze411fZQoaAZHQHI/p7sv7FdoB00DAWgIR0CcL6fV7Qb/dX2UKGgGR0ByuOO0b961aAdNowJoCEdAnDSNuk1uSHV9lChoBkdActjLWI42j2gHS9hoCEdAnDW9jXnQpnV9lChoBkdAcYaJtBOYY2gHTQgBaAhHQJw3KX1J17p1fZQoaAZHQG0E6sQumJpoB00HAWgIR0CcOKHsC1Z1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}