{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781264476f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707071375187376992, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACqucr7hRK07E1c3PVosnTyyqaC+VUSsPQAAgD8AAIA/Uyo6vlXt2T7vgrw9n/CKvqGiSL0PA7c9AAAAAAAAAAAmMoQ96y+nP+azJT/sRem+cfJ4udL7yT0AAAAAAAAAAADM0LsKZ225zWJKswribq56FXk6ym7RMwAAgD8AAIA/ps0iPuQz+T5OPjy+PAa0vkgjBb1yUfy9AAAAAAAAAAAaWHa9VMb9vBbpKzxwPLk7V3qEvZ38J74AAIA/AACAP5raIr0VsxU/Fqs4uQzVlL7340g8sniHvAAAAAAAAAAATX7SPQuzqD+tTOw+016QviAB9z2d5kc+AAAAAAAAAACG+DE+jDcEPzX+Cb766Ky+qYdXPAIrIb0AAAAAAAAAAADBWj7A+MQ+5opuvXe4hr6POTY90kfAuwAAAAAAAAAAwKDSPfaMCrprce620cWgsSDFTzmF9ws2AACAPwAAAAD6BwW+UqiBOvZHlDVAPFqysuFuvBvk1LQAAIA/AACAP1pjrb3AkpA+j9zGve4bVL7RdJu9Eg1mvQAAAAAAAAAAzRqwvQslcD9Xdwa+o8e/vi0RM72ix7u8AAAAAAAAAABmyjk9tsShP+7ZmT6vzru+XTOvPe35Wz4AAAAAAAAAAI1s7r0UZIQ+fkDNPRHwN74EGY68mS8hOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJC8XvYvnOMAWyUTXABjAF0lEdAkgqZssQNC3V9lChoBkdAcO1PuG9HtmgHTSgCaAhHQJILEB6rvLJ1fZQoaAZHQG3yu+ZgG8poB01YA2gIR0CSCxHYHxBmdX2UKGgGR0BwpyLzf779aAdNtgFoCEdAkgwom1IAfnV9lChoBkdAb83wcYIjW2gHTU0BaAhHQJILbwrlNlB1fZQoaAZHQHA3PKZDzAhoB02xAWgIR0CSD587IT4+dX2UKGgGR0BzfhUMoc7yaAdNZgFoCEdAkhA0LUkOZ3V9lChoBkdAQCXt0FKTS2gHS+JoCEdAkhG0X+ERJ3V9lChoBkdAcU6pRoAXEmgHTa8CaAhHQJIZbZGrjo91fZQoaAZHQHGIL9ETg2toB01/AWgIR0CSHx3dKujidX2UKGgGR0BuvkVnEl3RaAdNQQFoCEdAkiJ+sgdOqXV9lChoBkdAcMth0yP+42gHTb8BaAhHQJIjIPWhAW11fZQoaAZHQHKFfNZ/0/ZoB01SAWgIR0CSNibpu/DcdX2UKGgGR0BwvLWqcVgyaAdN2QFoCEdAkjaeQ2dd3XV9lChoBkdAbhD25hBqsWgHTQkCaAhHQJI4nRPXTVl1fZQoaAZHQHHS5wjt5UtoB00gA2gIR0CSOOcXFcY7dX2UKGgGR0BvZBHEuQIVaAdNbwFoCEdAkj6FgYxcmnV9lChoBkdAUL+u9vjwQWgHS+xoCEdAkj/Zswco6XV9lChoBkdAcIo1SOzY3GgHTZgDaAhHQJI//KDCgsd1fZQoaAZHQHDDNf5ULlVoB02tAmgIR0CSQNBHTZxrdX2UKGgGR0BmFw593KSxaAdN6ANoCEdAkkJnPE87p3V9lChoBkdAcKjPDYRNAWgHTU8BaAhHQJJHAMYuTRp1fZQoaAZHQHEgaaoddVxoB001AWgIR0CSR7CXhOxjdX2UKGgGR0Bk9sJhOP/8aAdN6ANoCEdAkkfz9KmKqHV9lChoBkdAclqKWcBltmgHTUUBaAhHQJJI1j2Bas91fZQoaAZHQGJ+qQJXyRVoB03oA2gIR0CSSDZFXq7idX2UKGgGR0Bxz6xOclPaaAdNVwFoCEdAkksYHTqjanV9lChoBkdAbRLl1bJOnGgHTWEBaAhHQJJLSlYU34t1fZQoaAZHQG64ZsKsuFpoB00AAmgIR0CSS8t8uzyCdX2UKGgGR0BxL2FoL5RCaAdNLQNoCEdAkk0POQhfSnV9lChoBkdAZbKsp5NXYGgHTegDaAhHQJJMeV3Ux211fZQoaAZHwC+UJlar3kBoB00BAWgIR0CSTXFEiMYNdX2UKGgGR0BX6YX0oSctaAdN6ANoCEdAkk8OlGgBcXV9lChoBkdAcuCiHIp6QmgHTUoBaAhHQJJP4sd1dPd1fZQoaAZHQG/+Exyn1nNoB01kAWgIR0CSUNnYQJ5WdX2UKGgGR0AnqQ+UyHmBaAdL9WgIR0CSUQzHjp9rdX2UKGgGR0BwGDXlKbrkaAdNbwFoCEdAklKA31jAi3V9lChoBkdAa15dM0xdp2gHTUQBaAhHQJJTg/bCaZx1fZQoaAZHQFD6Z6Uqx1RoB0vAaAhHQJJTtFAmiQF1fZQoaAZHQHKo77XQMQVoB01+AWgIR0CSV2vwmVqvdX2UKGgGR0Bxcq6xxDLKaAdNNAFoCEdAklaX9FWn0nV9lChoBkdAcBCdDIBBA2gHTTMBaAhHQJJWwBOpKjB1fZQoaAZHQHFja5oXbdtoB03SAWgIR0CSWllQdjoZdX2UKGgGR0BvuHwkPczqaAdNeAFoCEdAklp8dkrf+HV9lChoBkdAb31s2vStvGgHTSsBaAhHQJJbQKSgXdl1fZQoaAZHQG3jv60pmVZoB03nAWgIR0CSW3ycTakAdX2UKGgGR0BvuLK7qY7aaAdNXwFoCEdAkl/PIjnmrHV9lChoBkdAbEpiTdLxqmgHTQgCaAhHQJJh2XqqwQl1fZQoaAZHQHIWFTisGPhoB025AWgIR0CSY9e1rqMWdX2UKGgGR0ByqdM9KVY7aAdNGgFoCEdAkmQuruIAO3V9lChoBkdAbHowRoRIz2gHTaUBaAhHQJJ4jiT+vQp1fZQoaAZHQHBDMtbs4T9oB01OAWgIR0CSeBrgflp5dX2UKGgGR0BxQQIt16mgaAdNBwJoCEdAkniVaGHpKXV9lChoBkdAcY8bZOBUaWgHTXACaAhHQJJ5t+LFXJZ1fZQoaAZHQG/+JrtVrARoB03LAWgIR0CSelicoYvWdX2UKGgGR0BtMd87ZFodaAdNdQFoCEdAknmMQEpy63V9lChoBkdAcFPhMJx//mgHTTkBaAhHQJJ7DjS5RTF1fZQoaAZHQHGtrQLNOdpoB01pAWgIR0CSfBYwIt17dX2UKGgGR0BmoHapPykLaAdN6ANoCEdAkn0RzvJA+3V9lChoBkdAbTuI1tO2zGgHTV8BaAhHQJJ8mpWFN+N1fZQoaAZHQFJniOearm1oB0vGaAhHQJJ+BTsIE8t1fZQoaAZHQDqzUmUnogVoB0v/aAhHQJJ/oBT4tYl1fZQoaAZHQG9dn0TURWdoB004AWgIR0CSf+Vy3kPudX2UKGgGR0BOhm8mKIi1aAdL7WgIR0CSgPASFoL5dX2UKGgGR0Buv1twaR6oaAdNDQFoCEdAkoGIGY8dP3V9lChoBkdAcRyUcXFcZGgHTSUCaAhHQJKCexTsIE91fZQoaAZHQHFbwvg3tKJoB001AWgIR0CShJ1baAWjdX2UKGgGR0BxNEoRZlnRaAdNPgFoCEdAkoPZ0W/JvHV9lChoBkdAcpqzMzMzM2gHTTUBaAhHQJKEa63AmAt1fZQoaAZHQDQ5iH6/IsBoB0vlaAhHQJKEtN9H+ZR1fZQoaAZHQHG/yqQzUI9oB01gAWgIR0CShslIVdondX2UKGgGR0BxvjziCJ40aAdNKAJoCEdAkodqj8DSxHV9lChoBkdAcCOgqEvkBGgHTWcBaAhHQJKJHdznzQN1fZQoaAZHQHKLZV4oqkNoB02MAWgIR0CSiWeeFtbcdX2UKGgGR0ButFQj2SMcaAdNHQFoCEdAkopLvTgEU3V9lChoBkdAbyoGW2PT5WgHTWABaAhHQJKK7uYx+KF1fZQoaAZHQHCNm96C17ZoB003AWgIR0CSi42nKnvVdX2UKGgGR0Bf6feP7vXtaAdN6ANoCEdAkoyzTOPeYXV9lChoBkdAUcB/wy6+WWgHS/BoCEdAko2Qbp/wzHV9lChoBkdAcBCiuuA7P2gHTckBaAhHQJKNowlByCF1fZQoaAZHQDBIrYoRZlpoB0viaAhHQJKM1ew9q1x1fZQoaAZHQHACijL0SRNoB00XAWgIR0CSjO9RJmNBdX2UKGgGR0BwLY6DGtITaAdNSgFoCEdAko2us90RvnV9lChoBkdAbYySjgydnWgHTTEBaAhHQJKPna0x/NJ1fZQoaAZHQHEZYInjQzFoB027AWgIR0CSkPa6BiCrdX2UKGgGR0BxSCUA1ejVaAdNWwFoCEdAkpBEvoNd7nV9lChoBkdAVEYt03fhuWgHS+9oCEdAkpE0gKWszXV9lChoBkdAcFkcj7hvSGgHTU4BaAhHQJKTFSn+AEt1fZQoaAZHQHF18pLEk0JoB00mAWgIR0CSlDfR/mT1dX2UKGgGR0A4bAUL2HtXaAdNCAFoCEdAkpRjOxB3R3V9lChoBkdAO+pDu0CzTmgHS95oCEdAkpU7vgFX73V9lChoBkdAcGWH6MzdlGgHTR8BaAhHQJKWZJxvNvB1fZQoaAZHQHKlMWsRxtJoB00MAWgIR0CSlpp3os7NdX2UKGgGR0Bxa8KsuFpPaAdNDwFoCEdAkpX64YrJ83V9lChoBkdAcEHGx2SuAGgHTRMBaAhHQJKWNv4ubqh1fZQoaAZHQHEhNz0Yj0NoB00yAWgIR0CSl+9ytFKDdX2UKGgGR0BSkE5U96kZaAdL3mgIR0CSmPuwHJLedX2UKGgGR0Bth4c3l0YCaAdN1AFoCEdAkpsLmEGqxXV9lChoBkdAb8Sw9JSR82gHTTUBaAhHQJKaW1c+qzZ1fZQoaAZHQHF0491U2k1oB01JAmgIR0CSm2XMQmNSdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}