File size: 2,618 Bytes
5e9fcc8 cc50952 5e9fcc8 cc50952 5e9fcc8 cc50952 5e9fcc8 cc50952 5e9fcc8 cc50952 5e9fcc8 cc50952 5e9fcc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan2
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.7125
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan2
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5220
- Accuracy: 0.7125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7489 | 1.0 | 29 | 1.4959 | 0.3875 |
| 1.328 | 2.0 | 58 | 2.0243 | 0.35 |
| 1.2168 | 3.0 | 87 | 1.1332 | 0.5875 |
| 1.0299 | 4.0 | 116 | 1.4826 | 0.5375 |
| 0.911 | 5.0 | 145 | 1.2510 | 0.625 |
| 1.0819 | 6.0 | 174 | 1.7365 | 0.55 |
| 0.9513 | 7.0 | 203 | 1.3000 | 0.6 |
| 0.5687 | 8.0 | 232 | 1.0503 | 0.7125 |
| 0.4684 | 9.0 | 261 | 1.1167 | 0.7125 |
| 0.2836 | 10.0 | 290 | 1.5990 | 0.65 |
| 0.138 | 11.0 | 319 | 1.2096 | 0.7375 |
| 0.0406 | 12.0 | 348 | 1.7311 | 0.6375 |
| 0.0341 | 13.0 | 377 | 1.7048 | 0.6375 |
| 0.0059 | 14.0 | 406 | 1.4933 | 0.7 |
| 0.0034 | 15.0 | 435 | 1.5220 | 0.7125 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|